Spaces:
Sleeping
Sleeping
from ..custom_types import * | |
class FeedForward(nn.Module): | |
def __init__(self, in_dim, h_dim, out_d: Optional[int] = None, act=nnf.relu, dropout=0.): | |
super().__init__() | |
out_d = out_d if out_d is not None else in_dim | |
self.fc1 = nn.Linear(in_dim, h_dim) | |
self.act = act | |
self.fc2 = nn.Linear(h_dim, out_d) | |
self.dropout = nn.Dropout(dropout) | |
def forward(self, x): | |
x = self.fc1(x) | |
x = self.act(x) | |
x = self.dropout(x) | |
x = self.fc2(x) | |
x = self.dropout(x) | |
return x | |
class MultiHeadAttention(nn.Module): | |
def __init__(self, dim_self, dim_ref, num_heads, bias=True, dropout=0.): | |
super().__init__() | |
self.num_heads = num_heads | |
head_dim = dim_self // num_heads | |
self.scale = head_dim ** -0.5 | |
self.to_queries = nn.Linear(dim_self, dim_self, bias=bias) | |
self.to_keys_values = nn.Linear(dim_ref, dim_self * 2, bias=bias) | |
self.project = nn.Linear(dim_self, dim_self) | |
self.dropout = nn.Dropout(dropout) | |
def forward_interpolation(self, queries: T, keys: T, values: T, alpha: T, mask: TN = None) -> TNS: | |
attention = torch.einsum('nhd,bmhd->bnmh', queries[0], keys) * self.scale | |
if mask is not None: | |
if mask.dim() == 2: | |
mask = mask.unsqueeze(1) | |
attention = attention.masked_fill(mask.unsqueeze(3), float("-inf")) | |
attention = attention.softmax(dim=2) | |
attention = attention * alpha[:, None, None, None] | |
out = torch.einsum('bnmh,bmhd->nhd', attention, values).reshape(1, attention.shape[1], -1) | |
return out, attention | |
def forward(self, x, y: Optional[T] = None, mask: Optional[T] = None, alpha: TN = None): | |
y = y if y is not None else x | |
b_a, n, c = x.shape | |
b, m, d = y.shape | |
# b n h dh | |
queries = self.to_queries(x).reshape(b_a, n, self.num_heads, c // self.num_heads) | |
# b m 2 h dh | |
keys_values = self.to_keys_values(y).reshape(b, m, 2, self.num_heads, c // self.num_heads) | |
keys, values = keys_values[:, :, 0], keys_values[:, :, 1] | |
if alpha is not None: | |
out, attention = self.forward_interpolation(queries, keys, values, alpha, mask) | |
else: | |
attention = torch.einsum('bnhd,bmhd->bnmh', queries, keys) * self.scale | |
if mask is not None: | |
if mask.dim() == 2: | |
mask = mask.unsqueeze(1) | |
attention = attention.masked_fill(mask.unsqueeze(3), float("-inf")) | |
attention = attention.softmax(dim=2) | |
out = torch.einsum('bnmh,bmhd->bnhd', attention, values).reshape(b, n, c) | |
out = self.project(out) | |
return out, attention | |
class TransformerLayer(nn.Module): | |
def forward_with_attention(self, x, y: Optional[T] = None, mask: Optional[T] = None, alpha: TN = None): | |
x_, attention = self.attn(self.norm1(x), y, mask, alpha) | |
x = x + x_ | |
x = x + self.mlp(self.norm2(x)) | |
return x, attention | |
def forward(self, x, y: Optional[T] = None, mask: Optional[T] = None, alpha: TN = None): | |
x = x + self.attn(self.norm1(x), y, mask, alpha)[0] | |
x = x + self.mlp(self.norm2(x)) | |
return x | |
def __init__(self, dim_self, dim_ref, num_heads, mlp_ratio=4., bias=False, dropout=0., act=nnf.relu, | |
norm_layer: nn.Module = nn.LayerNorm): | |
super().__init__() | |
self.norm1 = norm_layer(dim_self) | |
self.attn = MultiHeadAttention(dim_self, dim_ref, num_heads, bias=bias, dropout=dropout) | |
self.norm2 = norm_layer(dim_self) | |
self.mlp = FeedForward(dim_self, int(dim_self * mlp_ratio), act=act, dropout=dropout) | |
class DummyTransformer: | |
def forward_with_attention(x, *_, **__): | |
return x, [] | |
def forward(x, *_, **__): | |
return x | |
class Transformer(nn.Module): | |
def forward_with_attention(self, x, y: Optional[T] = None, mask: Optional[T] = None, alpha: TN = None): | |
attentions = [] | |
for layer in self.layers: | |
x, att = layer.forward_with_attention(x, y, mask, alpha) | |
attentions.append(att) | |
return x, attentions | |
def forward(self, x, y: TN = None, mask: TN = None, alpha: TN = None): | |
for layer in self.layers: | |
x = layer(x, y, mask, alpha) | |
return x | |
def __init__(self, dim_self: int, num_heads: int, num_layers: int, dim_ref: Optional[int] = None, | |
mlp_ratio: float = 2., act=nnf.relu, norm_layer: nn.Module = nn.LayerNorm): | |
super(Transformer, self).__init__() | |
dim_ref = dim_ref if dim_ref is not None else dim_self | |
self.layers = nn.ModuleList([TransformerLayer(dim_self, dim_ref, num_heads, mlp_ratio, act=act, | |
norm_layer=norm_layer) for _ in range(num_layers)]) | |