from ..custom_types import * class FeedForward(nn.Module): def __init__(self, in_dim, h_dim, out_d: Optional[int] = None, act=nnf.relu, dropout=0.): super().__init__() out_d = out_d if out_d is not None else in_dim self.fc1 = nn.Linear(in_dim, h_dim) self.act = act self.fc2 = nn.Linear(h_dim, out_d) self.dropout = nn.Dropout(dropout) def forward(self, x): x = self.fc1(x) x = self.act(x) x = self.dropout(x) x = self.fc2(x) x = self.dropout(x) return x class MultiHeadAttention(nn.Module): def __init__(self, dim_self, dim_ref, num_heads, bias=True, dropout=0.): super().__init__() self.num_heads = num_heads head_dim = dim_self // num_heads self.scale = head_dim ** -0.5 self.to_queries = nn.Linear(dim_self, dim_self, bias=bias) self.to_keys_values = nn.Linear(dim_ref, dim_self * 2, bias=bias) self.project = nn.Linear(dim_self, dim_self) self.dropout = nn.Dropout(dropout) def forward_interpolation(self, queries: T, keys: T, values: T, alpha: T, mask: TN = None) -> TNS: attention = torch.einsum('nhd,bmhd->bnmh', queries[0], keys) * self.scale if mask is not None: if mask.dim() == 2: mask = mask.unsqueeze(1) attention = attention.masked_fill(mask.unsqueeze(3), float("-inf")) attention = attention.softmax(dim=2) attention = attention * alpha[:, None, None, None] out = torch.einsum('bnmh,bmhd->nhd', attention, values).reshape(1, attention.shape[1], -1) return out, attention def forward(self, x, y: Optional[T] = None, mask: Optional[T] = None, alpha: TN = None): y = y if y is not None else x b_a, n, c = x.shape b, m, d = y.shape # b n h dh queries = self.to_queries(x).reshape(b_a, n, self.num_heads, c // self.num_heads) # b m 2 h dh keys_values = self.to_keys_values(y).reshape(b, m, 2, self.num_heads, c // self.num_heads) keys, values = keys_values[:, :, 0], keys_values[:, :, 1] if alpha is not None: out, attention = self.forward_interpolation(queries, keys, values, alpha, mask) else: attention = torch.einsum('bnhd,bmhd->bnmh', queries, keys) * self.scale if mask is not None: if mask.dim() == 2: mask = mask.unsqueeze(1) attention = attention.masked_fill(mask.unsqueeze(3), float("-inf")) attention = attention.softmax(dim=2) out = torch.einsum('bnmh,bmhd->bnhd', attention, values).reshape(b, n, c) out = self.project(out) return out, attention class TransformerLayer(nn.Module): def forward_with_attention(self, x, y: Optional[T] = None, mask: Optional[T] = None, alpha: TN = None): x_, attention = self.attn(self.norm1(x), y, mask, alpha) x = x + x_ x = x + self.mlp(self.norm2(x)) return x, attention def forward(self, x, y: Optional[T] = None, mask: Optional[T] = None, alpha: TN = None): x = x + self.attn(self.norm1(x), y, mask, alpha)[0] x = x + self.mlp(self.norm2(x)) return x def __init__(self, dim_self, dim_ref, num_heads, mlp_ratio=4., bias=False, dropout=0., act=nnf.relu, norm_layer: nn.Module = nn.LayerNorm): super().__init__() self.norm1 = norm_layer(dim_self) self.attn = MultiHeadAttention(dim_self, dim_ref, num_heads, bias=bias, dropout=dropout) self.norm2 = norm_layer(dim_self) self.mlp = FeedForward(dim_self, int(dim_self * mlp_ratio), act=act, dropout=dropout) class DummyTransformer: @staticmethod def forward_with_attention(x, *_, **__): return x, [] @staticmethod def forward(x, *_, **__): return x class Transformer(nn.Module): def forward_with_attention(self, x, y: Optional[T] = None, mask: Optional[T] = None, alpha: TN = None): attentions = [] for layer in self.layers: x, att = layer.forward_with_attention(x, y, mask, alpha) attentions.append(att) return x, attentions def forward(self, x, y: TN = None, mask: TN = None, alpha: TN = None): for layer in self.layers: x = layer(x, y, mask, alpha) return x def __init__(self, dim_self: int, num_heads: int, num_layers: int, dim_ref: Optional[int] = None, mlp_ratio: float = 2., act=nnf.relu, norm_layer: nn.Module = nn.LayerNorm): super(Transformer, self).__init__() dim_ref = dim_ref if dim_ref is not None else dim_self self.layers = nn.ModuleList([TransformerLayer(dim_self, dim_ref, num_heads, mlp_ratio, act=act, norm_layer=norm_layer) for _ in range(num_layers)])