xinchen9 commited on
Commit
561960f
1 Parent(s): 16dcabb

[Update]add prompt links

Browse files
Files changed (1) hide show
  1. about.py +13 -5
about.py CHANGED
@@ -20,19 +20,27 @@ NUM_FEWSHOT = 0 # Change with your few shot
20
 
21
 
22
 
 
23
  # Your leaderboard name
24
- TITLE = """<h1 align="center" id="space-title">UnlearnDiffAtk Benchmark</h1>"""
25
 
26
  # subtitle
27
  SUB_TITLE = """<h2 align="center" id="space-title">Effective and efficient adversarial prompt generation approach for diffusion models</h1>"""
28
 
29
  # What does your leaderboard evaluate?
30
  INTRODUCTION_TEXT = """
31
- This benchmark is evaluates the robustness of safety-driven unlearned diffusion models (DMs)
32
- (i.e., DMs after unlearning undesirable concepts, styles, or objects) across a variety of tasks. For more details, please visit the [project](https://www.optml-group.com/posts/mu_attack),
33
  check the [code](https://github.com/OPTML-Group/Diffusion-MU-Attack), and read the [paper](https://arxiv.org/abs/2310.11868).\\
34
- Demo of our offensive method: [UnlearnDiffAtk](https://huggingface.co/spaces/xinchen9/SD_Offense)\\
35
- Demo of our defensive method: [AdvUnlearn](https://huggingface.co/spaces/xinchen9/SD_Defense)
 
 
 
 
 
 
 
36
  """
37
 
38
  # Which evaluations are you running? how can people reproduce what you have?
 
20
 
21
 
22
 
23
+
24
  # Your leaderboard name
25
+ TITLE = """<h1 align="center" id="space-title"> Demo of UnlearnDiffAtk</h1>"""
26
 
27
  # subtitle
28
  SUB_TITLE = """<h2 align="center" id="space-title">Effective and efficient adversarial prompt generation approach for diffusion models</h1>"""
29
 
30
  # What does your leaderboard evaluate?
31
  INTRODUCTION_TEXT = """
32
+ UnlearnDiffAtk is an effective and efficient adversarial prompt generation approach for unlearned diffusion models(DMs). For more details,
33
+ please refer to the [benchmark of UnlearnDiffAtk], visit the [project](https://www.optml-group.com/posts/mu_attack),
34
  check the [code](https://github.com/OPTML-Group/Diffusion-MU-Attack), and read the [paper](https://arxiv.org/abs/2310.11868).\\
35
+ The prompts were validated by us for undesirable concepts: [church](https://github.com/OPTML-Group/Diffusion-MU-Attack/blob/e848ddd19df1f86d08e08cc9146f8a2bb126da12/prompts/church.csv),
36
+ [Garbage Truch](https://github.com/OPTML-Group/Diffusion-MU-Attack/blob/e848ddd19df1f86d08e08cc9146f8a2bb126da12/prompts/garbage_truck.csv),
37
+ [Parachute](https://github.com/OPTML-Group/Diffusion-MU-Attack/blob/e848ddd19df1f86d08e08cc9146f8a2bb126da12/prompts/parachute.csv),
38
+ [Tench](https://github.com/OPTML-Group/Diffusion-MU-Attack/blob/e848ddd19df1f86d08e08cc9146f8a2bb126da12/prompts/tench.csv);\\
39
+ style [Van Gogh](https://github.com/OPTML-Group/Diffusion-MU-Attack/blob/e848ddd19df1f86d08e08cc9146f8a2bb126da12/prompts/vangogh.csv),
40
+ and objects [Nudity](https://github.com/OPTML-Group/Diffusion-MU-Attack/blob/e848ddd19df1f86d08e08cc9146f8a2bb126da12/prompts/nudity.csv),
41
+ [Illegal](https://github.com/OPTML-Group/Diffusion-MU-Attack/blob/e848ddd19df1f86d08e08cc9146f8a2bb126da12/prompts/illegal.csv),
42
+ [Violence](https://github.com/OPTML-Group/Diffusion-MU-Attack/blob/e848ddd19df1f86d08e08cc9146f8a2bb126da12/prompts/violence.csv).
43
+
44
  """
45
 
46
  # Which evaluations are you running? how can people reproduce what you have?