Spaces:
Running
Running
File size: 6,702 Bytes
1e7dab8 46dbc0f 1e7dab8 46dbc0f 1e7dab8 46dbc0f 1e7dab8 46dbc0f 1e7dab8 46dbc0f 1e7dab8 46dbc0f 1e7dab8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 |
from typing import List, Dict, Optional, Tuple, Type
from presidio_anonymizer import AnonymizerEngine
from presidio_analyzer import AnalyzerEngine, RecognizerRegistry
from presidio_anonymizer.entities import (
OperatorConfig,
)
from presidio_analyzer.nlp_engine import (
NlpEngine,
NlpEngineProvider,
)
from presidio_analyzer.nlp_engine import TransformersNlpEngine, NerModelConfiguration
class PiiMaskingService():
def analyze(self, text: str, model: str):
entitiesToRecognize=['UK_NHS','EMAIL','AU_ABN','CRYPTO','ID','URL',
'AU_MEDICARE','IN_PAN','ORGANIZATION','IN_AADHAAR',
'SG_NRIC_FIN','EMAIL_ADDRESS','AU_ACN','US_DRIVER_LICENSE',
'IP_ADDRESS','DATE_TIME','LOCATION','PERSON','CREDIT_CARD',
'IBAN_CODE','US_BANK_NUMBER','PHONE_NUMBER','MEDICAL_LICENSE',
'US_SSN','AU_TFN','US_PASSPORT','US_ITIN','NRP','AGE','GENERIC_PII'
]
if model == "HuggingFace/obi/deid_roberta_i2b2":
nlp_engine, registry= self.create_nlp_engine_with_transformers("obi/deid_roberta_i2b2")
elif model == "flair/ner-english-large":
nlp_engine, registry= self.create_nlp_engine_with_flair("flair/ner-english-large")
analyzer = AnalyzerEngine(nlp_engine=nlp_engine, registry=registry)
results = analyzer.analyze(text=text, entities=entitiesToRecognize, language='en')
print("analyzer results:")
print(results)
return results
def anonymize(
self,
text: str,
operator: str,
model: str
# analyze_results: List[RecognizerResult],
):
operator_config = None
encrypt_key = "WmZq4t7w!z%C&F)J"
if operator == 'mask':
operator_config = {
"type": "mask",
"masking_char": "*",
"chars_to_mask": 15,
"from_end": False,
}
elif operator == "encrypt":
operator_config = {"key": encrypt_key}
elif operator == "highlight":
operator_config = {"lambda": lambda x: x}
if operator == "highlight":
operator = "custom"
analyzer_result = self.analyze(text, model)
engine = AnonymizerEngine()
# Invoke the anonymize function with the text, analyzer results and
# Operators to define the anonymization type.
result = engine.anonymize(
text=text,
operators={"DEFAULT": OperatorConfig(operator, operator_config)},
analyzer_results=analyzer_result
)
print("res:")
print(result)
print(result.text)
print(type(result.text))
return result.text
def create_nlp_engine_with_flair(
self,
model_path: str,
) -> Tuple[NlpEngine, RecognizerRegistry]:
"""
Instantiate an NlpEngine with a FlairRecognizer and a small spaCy model.
The FlairRecognizer would return results from Flair models, the spaCy model
would return NlpArtifacts such as POS and lemmas.
:param model_path: Flair model path.
"""
from flair_recognizer import FlairRecognizer
registry = RecognizerRegistry()
registry.load_predefined_recognizers()
# there is no official Flair NlpEngine, hence we load it as an additional recognizer
# if not spacy.util.is_package("en_core_web_sm"):
# spacy.cli.download("en_core_web_sm")
# Using a small spaCy model + a Flair NER model
flair_recognizer = FlairRecognizer(model_path=model_path)
nlp_configuration = {
"nlp_engine_name": "spacy",
"models": [{"lang_code": "en", "model_name": "en_core_web_sm"}],
}
registry.add_recognizer(flair_recognizer)
registry.remove_recognizer("SpacyRecognizer")
nlp_engine = NlpEngineProvider(nlp_configuration=nlp_configuration).create_engine()
return nlp_engine, registry
def create_nlp_engine_with_transformers(
self,
model_path: str,
) -> Tuple[NlpEngine, RecognizerRegistry]:
"""
Instantiate an NlpEngine with a TransformersRecognizer and a small spaCy model.
The TransformersRecognizer would return results from Transformers models, the spaCy model
would return NlpArtifacts such as POS and lemmas.
:param model_path: HuggingFace model path.
"""
print(f"Loading Transformers model: {model_path} of type {type(model_path)}")
nlp_configuration = {
"nlp_engine_name": "transformers",
"models": [
{
"lang_code": "en",
"model_name": {"spacy": "en_core_web_sm", "transformers": model_path},
}
],
"ner_model_configuration": {
"model_to_presidio_entity_mapping": {
"PER": "PERSON",
"PERSON": "PERSON",
"LOC": "LOCATION",
"LOCATION": "LOCATION",
"GPE": "LOCATION",
"ORG": "ORGANIZATION",
"ORGANIZATION": "ORGANIZATION",
"NORP": "NRP",
"AGE": "AGE",
"ID": "ID",
"EMAIL": "EMAIL",
"PATIENT": "PERSON",
"STAFF": "PERSON",
"HOSP": "ORGANIZATION",
"PATORG": "ORGANIZATION",
"DATE": "DATE_TIME",
"TIME": "DATE_TIME",
"PHONE": "PHONE_NUMBER",
"HCW": "PERSON",
"HOSPITAL": "ORGANIZATION",
"FACILITY": "LOCATION",
},
"low_confidence_score_multiplier": 0.4,
"low_score_entity_names": ["ID"],
"labels_to_ignore": [
"CARDINAL",
"EVENT",
"LANGUAGE",
"LAW",
"MONEY",
"ORDINAL",
"PERCENT",
"PRODUCT",
"QUANTITY",
"WORK_OF_ART",
],
},
}
nlp_engine = NlpEngineProvider(nlp_configuration=nlp_configuration).create_engine()
registry = RecognizerRegistry()
registry.load_predefined_recognizers(nlp_engine=nlp_engine)
return nlp_engine, registry
|