File size: 114,669 Bytes
46dbc0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
{
  "nbformat": 4,
  "nbformat_minor": 0,
  "metadata": {
    "colab": {
      "provenance": []
    },
    "kernelspec": {
      "name": "python3",
      "display_name": "Python 3"
    },
    "language_info": {
      "name": "python"
    }
  },
  "cells": [
    {
      "cell_type": "code",
      "execution_count": 1,
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "gczeIWL7Yqml",
        "outputId": "353b3804-fb2b-4ead-d190-69cc7ef11ea6"
      },
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "Collecting datasets\n",
            "  Downloading datasets-2.18.0-py3-none-any.whl (510 kB)\n",
            "\u001b[?25l     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m0.0/510.5 kB\u001b[0m \u001b[31m?\u001b[0m eta \u001b[36m-:--:--\u001b[0m\r\u001b[2K     \u001b[91m━━━━\u001b[0m\u001b[91mβ•Έ\u001b[0m\u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m61.4/510.5 kB\u001b[0m \u001b[31m1.7 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m\r\u001b[2K     \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[90mβ•Ί\u001b[0m \u001b[32m501.8/510.5 kB\u001b[0m \u001b[31m7.3 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m\r\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m510.5/510.5 kB\u001b[0m \u001b[31m5.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[?25hRequirement already satisfied: filelock in /usr/local/lib/python3.10/dist-packages (from datasets) (3.13.1)\n",
            "Requirement already satisfied: numpy>=1.17 in /usr/local/lib/python3.10/dist-packages (from datasets) (1.25.2)\n",
            "Requirement already satisfied: pyarrow>=12.0.0 in /usr/local/lib/python3.10/dist-packages (from datasets) (14.0.2)\n",
            "Requirement already satisfied: pyarrow-hotfix in /usr/local/lib/python3.10/dist-packages (from datasets) (0.6)\n",
            "Collecting dill<0.3.9,>=0.3.0 (from datasets)\n",
            "  Downloading dill-0.3.8-py3-none-any.whl (116 kB)\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m116.3/116.3 kB\u001b[0m \u001b[31m7.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[?25hRequirement already satisfied: pandas in /usr/local/lib/python3.10/dist-packages (from datasets) (1.5.3)\n",
            "Requirement already satisfied: requests>=2.19.0 in /usr/local/lib/python3.10/dist-packages (from datasets) (2.31.0)\n",
            "Requirement already satisfied: tqdm>=4.62.1 in /usr/local/lib/python3.10/dist-packages (from datasets) (4.66.2)\n",
            "Collecting xxhash (from datasets)\n",
            "  Downloading xxhash-3.4.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (194 kB)\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m194.1/194.1 kB\u001b[0m \u001b[31m7.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[?25hCollecting multiprocess (from datasets)\n",
            "  Downloading multiprocess-0.70.16-py310-none-any.whl (134 kB)\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m134.8/134.8 kB\u001b[0m \u001b[31m4.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[?25hRequirement already satisfied: fsspec[http]<=2024.2.0,>=2023.1.0 in /usr/local/lib/python3.10/dist-packages (from datasets) (2023.6.0)\n",
            "Requirement already satisfied: aiohttp in /usr/local/lib/python3.10/dist-packages (from datasets) (3.9.3)\n",
            "Requirement already satisfied: huggingface-hub>=0.19.4 in /usr/local/lib/python3.10/dist-packages (from datasets) (0.20.3)\n",
            "Requirement already satisfied: packaging in /usr/local/lib/python3.10/dist-packages (from datasets) (24.0)\n",
            "Requirement already satisfied: pyyaml>=5.1 in /usr/local/lib/python3.10/dist-packages (from datasets) (6.0.1)\n",
            "Requirement already satisfied: aiosignal>=1.1.2 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets) (1.3.1)\n",
            "Requirement already satisfied: attrs>=17.3.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets) (23.2.0)\n",
            "Requirement already satisfied: frozenlist>=1.1.1 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets) (1.4.1)\n",
            "Requirement already satisfied: multidict<7.0,>=4.5 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets) (6.0.5)\n",
            "Requirement already satisfied: yarl<2.0,>=1.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets) (1.9.4)\n",
            "Requirement already satisfied: async-timeout<5.0,>=4.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets) (4.0.3)\n",
            "Requirement already satisfied: typing-extensions>=3.7.4.3 in /usr/local/lib/python3.10/dist-packages (from huggingface-hub>=0.19.4->datasets) (4.10.0)\n",
            "Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.10/dist-packages (from requests>=2.19.0->datasets) (3.3.2)\n",
            "Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.10/dist-packages (from requests>=2.19.0->datasets) (3.6)\n",
            "Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.10/dist-packages (from requests>=2.19.0->datasets) (2.0.7)\n",
            "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.10/dist-packages (from requests>=2.19.0->datasets) (2024.2.2)\n",
            "Requirement already satisfied: python-dateutil>=2.8.1 in /usr/local/lib/python3.10/dist-packages (from pandas->datasets) (2.8.2)\n",
            "Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.10/dist-packages (from pandas->datasets) (2023.4)\n",
            "Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.10/dist-packages (from python-dateutil>=2.8.1->pandas->datasets) (1.16.0)\n",
            "Installing collected packages: xxhash, dill, multiprocess, datasets\n",
            "Successfully installed datasets-2.18.0 dill-0.3.8 multiprocess-0.70.16 xxhash-3.4.1\n",
            "--2024-03-16 03:52:00--  https://raw.githubusercontent.com/sighsmile/conlleval/master/conlleval.py\n",
            "Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 185.199.108.133, 185.199.109.133, 185.199.110.133, ...\n",
            "Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|185.199.108.133|:443... connected.\n",
            "HTTP request sent, awaiting response... 200 OK\n",
            "Length: 7502 (7.3K) [text/plain]\n",
            "Saving to: β€˜conlleval.py’\n",
            "\n",
            "conlleval.py        100%[===================>]   7.33K  --.-KB/s    in 0s      \n",
            "\n",
            "2024-03-16 03:52:00 (96.5 MB/s) - β€˜conlleval.py’ saved [7502/7502]\n",
            "\n"
          ]
        }
      ],
      "source": [
        "!pip3 install datasets\n",
        "!wget https://raw.githubusercontent.com/sighsmile/conlleval/master/conlleval.py\n"
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "!pip install presidio-analyzer"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "x5eLSkVqlhh6",
        "outputId": "9cf46693-5e60-425d-8693-22a5df24fea0"
      },
      "execution_count": 36,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "Collecting presidio-analyzer\n",
            "  Downloading presidio_analyzer-2.2.353-py3-none-any.whl (85 kB)\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m85.7/85.7 kB\u001b[0m \u001b[31m2.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[?25hRequirement already satisfied: spacy<4.0.0,>=3.4.4 in /usr/local/lib/python3.10/dist-packages (from presidio-analyzer) (3.7.4)\n",
            "Requirement already satisfied: regex in /usr/local/lib/python3.10/dist-packages (from presidio-analyzer) (2023.12.25)\n",
            "Collecting tldextract (from presidio-analyzer)\n",
            "  Downloading tldextract-5.1.1-py3-none-any.whl (97 kB)\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m97.7/97.7 kB\u001b[0m \u001b[31m9.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[?25hRequirement already satisfied: pyyaml in /usr/local/lib/python3.10/dist-packages (from presidio-analyzer) (6.0.1)\n",
            "Collecting phonenumbers<9.0.0,>=8.12 (from presidio-analyzer)\n",
            "  Downloading phonenumbers-8.13.32-py2.py3-none-any.whl (2.6 MB)\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m2.6/2.6 MB\u001b[0m \u001b[31m39.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[?25hRequirement already satisfied: spacy-legacy<3.1.0,>=3.0.11 in /usr/local/lib/python3.10/dist-packages (from spacy<4.0.0,>=3.4.4->presidio-analyzer) (3.0.12)\n",
            "Requirement already satisfied: spacy-loggers<2.0.0,>=1.0.0 in /usr/local/lib/python3.10/dist-packages (from spacy<4.0.0,>=3.4.4->presidio-analyzer) (1.0.5)\n",
            "Requirement already satisfied: murmurhash<1.1.0,>=0.28.0 in /usr/local/lib/python3.10/dist-packages (from spacy<4.0.0,>=3.4.4->presidio-analyzer) (1.0.10)\n",
            "Requirement already satisfied: cymem<2.1.0,>=2.0.2 in /usr/local/lib/python3.10/dist-packages (from spacy<4.0.0,>=3.4.4->presidio-analyzer) (2.0.8)\n",
            "Requirement already satisfied: preshed<3.1.0,>=3.0.2 in /usr/local/lib/python3.10/dist-packages (from spacy<4.0.0,>=3.4.4->presidio-analyzer) (3.0.9)\n",
            "Requirement already satisfied: thinc<8.3.0,>=8.2.2 in /usr/local/lib/python3.10/dist-packages (from spacy<4.0.0,>=3.4.4->presidio-analyzer) (8.2.3)\n",
            "Requirement already satisfied: wasabi<1.2.0,>=0.9.1 in /usr/local/lib/python3.10/dist-packages (from spacy<4.0.0,>=3.4.4->presidio-analyzer) (1.1.2)\n",
            "Requirement already satisfied: srsly<3.0.0,>=2.4.3 in /usr/local/lib/python3.10/dist-packages (from spacy<4.0.0,>=3.4.4->presidio-analyzer) (2.4.8)\n",
            "Requirement already satisfied: catalogue<2.1.0,>=2.0.6 in /usr/local/lib/python3.10/dist-packages (from spacy<4.0.0,>=3.4.4->presidio-analyzer) (2.0.10)\n",
            "Requirement already satisfied: weasel<0.4.0,>=0.1.0 in /usr/local/lib/python3.10/dist-packages (from spacy<4.0.0,>=3.4.4->presidio-analyzer) (0.3.4)\n",
            "Requirement already satisfied: typer<0.10.0,>=0.3.0 in /usr/local/lib/python3.10/dist-packages (from spacy<4.0.0,>=3.4.4->presidio-analyzer) (0.9.0)\n",
            "Requirement already satisfied: smart-open<7.0.0,>=5.2.1 in /usr/local/lib/python3.10/dist-packages (from spacy<4.0.0,>=3.4.4->presidio-analyzer) (6.4.0)\n",
            "Requirement already satisfied: tqdm<5.0.0,>=4.38.0 in /usr/local/lib/python3.10/dist-packages (from spacy<4.0.0,>=3.4.4->presidio-analyzer) (4.66.2)\n",
            "Requirement already satisfied: requests<3.0.0,>=2.13.0 in /usr/local/lib/python3.10/dist-packages (from spacy<4.0.0,>=3.4.4->presidio-analyzer) (2.31.0)\n",
            "Requirement already satisfied: pydantic!=1.8,!=1.8.1,<3.0.0,>=1.7.4 in /usr/local/lib/python3.10/dist-packages (from spacy<4.0.0,>=3.4.4->presidio-analyzer) (2.6.4)\n",
            "Requirement already satisfied: jinja2 in /usr/local/lib/python3.10/dist-packages (from spacy<4.0.0,>=3.4.4->presidio-analyzer) (3.1.3)\n",
            "Requirement already satisfied: setuptools in /usr/local/lib/python3.10/dist-packages (from spacy<4.0.0,>=3.4.4->presidio-analyzer) (67.7.2)\n",
            "Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.10/dist-packages (from spacy<4.0.0,>=3.4.4->presidio-analyzer) (24.0)\n",
            "Requirement already satisfied: langcodes<4.0.0,>=3.2.0 in /usr/local/lib/python3.10/dist-packages (from spacy<4.0.0,>=3.4.4->presidio-analyzer) (3.3.0)\n",
            "Requirement already satisfied: numpy>=1.19.0 in /usr/local/lib/python3.10/dist-packages (from spacy<4.0.0,>=3.4.4->presidio-analyzer) (1.25.2)\n",
            "Requirement already satisfied: idna in /usr/local/lib/python3.10/dist-packages (from tldextract->presidio-analyzer) (3.6)\n",
            "Collecting requests-file>=1.4 (from tldextract->presidio-analyzer)\n",
            "  Downloading requests_file-2.0.0-py2.py3-none-any.whl (4.2 kB)\n",
            "Requirement already satisfied: filelock>=3.0.8 in /usr/local/lib/python3.10/dist-packages (from tldextract->presidio-analyzer) (3.13.1)\n",
            "Requirement already satisfied: annotated-types>=0.4.0 in /usr/local/lib/python3.10/dist-packages (from pydantic!=1.8,!=1.8.1,<3.0.0,>=1.7.4->spacy<4.0.0,>=3.4.4->presidio-analyzer) (0.6.0)\n",
            "Requirement already satisfied: pydantic-core==2.16.3 in /usr/local/lib/python3.10/dist-packages (from pydantic!=1.8,!=1.8.1,<3.0.0,>=1.7.4->spacy<4.0.0,>=3.4.4->presidio-analyzer) (2.16.3)\n",
            "Requirement already satisfied: typing-extensions>=4.6.1 in /usr/local/lib/python3.10/dist-packages (from pydantic!=1.8,!=1.8.1,<3.0.0,>=1.7.4->spacy<4.0.0,>=3.4.4->presidio-analyzer) (4.10.0)\n",
            "Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.10/dist-packages (from requests<3.0.0,>=2.13.0->spacy<4.0.0,>=3.4.4->presidio-analyzer) (3.3.2)\n",
            "Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.10/dist-packages (from requests<3.0.0,>=2.13.0->spacy<4.0.0,>=3.4.4->presidio-analyzer) (2.0.7)\n",
            "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.10/dist-packages (from requests<3.0.0,>=2.13.0->spacy<4.0.0,>=3.4.4->presidio-analyzer) (2024.2.2)\n",
            "Requirement already satisfied: blis<0.8.0,>=0.7.8 in /usr/local/lib/python3.10/dist-packages (from thinc<8.3.0,>=8.2.2->spacy<4.0.0,>=3.4.4->presidio-analyzer) (0.7.11)\n",
            "Requirement already satisfied: confection<1.0.0,>=0.0.1 in /usr/local/lib/python3.10/dist-packages (from thinc<8.3.0,>=8.2.2->spacy<4.0.0,>=3.4.4->presidio-analyzer) (0.1.4)\n",
            "Requirement already satisfied: click<9.0.0,>=7.1.1 in /usr/local/lib/python3.10/dist-packages (from typer<0.10.0,>=0.3.0->spacy<4.0.0,>=3.4.4->presidio-analyzer) (8.1.7)\n",
            "Requirement already satisfied: cloudpathlib<0.17.0,>=0.7.0 in /usr/local/lib/python3.10/dist-packages (from weasel<0.4.0,>=0.1.0->spacy<4.0.0,>=3.4.4->presidio-analyzer) (0.16.0)\n",
            "Requirement already satisfied: MarkupSafe>=2.0 in /usr/local/lib/python3.10/dist-packages (from jinja2->spacy<4.0.0,>=3.4.4->presidio-analyzer) (2.1.5)\n",
            "Installing collected packages: phonenumbers, requests-file, tldextract, presidio-analyzer\n",
            "Successfully installed phonenumbers-8.13.32 presidio-analyzer-2.2.353 requests-file-2.0.0 tldextract-5.1.1\n"
          ]
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "!pip install flair"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 1000
        },
        "id": "XWdmM-gGmHV-",
        "outputId": "42e0e840-89df-4a99-a3d7-8d78fc7beff0"
      },
      "execution_count": 38,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "Collecting flair\n",
            "  Downloading flair-0.13.1-py3-none-any.whl (388 kB)\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m388.3/388.3 kB\u001b[0m \u001b[31m3.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[?25hCollecting boto3>=1.20.27 (from flair)\n",
            "  Downloading boto3-1.34.64-py3-none-any.whl (139 kB)\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m139.3/139.3 kB\u001b[0m \u001b[31m10.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[?25hCollecting bpemb>=0.3.2 (from flair)\n",
            "  Downloading bpemb-0.3.4-py3-none-any.whl (19 kB)\n",
            "Collecting conllu>=4.0 (from flair)\n",
            "  Downloading conllu-4.5.3-py2.py3-none-any.whl (16 kB)\n",
            "Collecting deprecated>=1.2.13 (from flair)\n",
            "  Downloading Deprecated-1.2.14-py2.py3-none-any.whl (9.6 kB)\n",
            "Collecting ftfy>=6.1.0 (from flair)\n",
            "  Downloading ftfy-6.2.0-py3-none-any.whl (54 kB)\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m54.4/54.4 kB\u001b[0m \u001b[31m9.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[?25hRequirement already satisfied: gdown>=4.4.0 in /usr/local/lib/python3.10/dist-packages (from flair) (4.7.3)\n",
            "Requirement already satisfied: gensim>=4.2.0 in /usr/local/lib/python3.10/dist-packages (from flair) (4.3.2)\n",
            "Requirement already satisfied: huggingface-hub>=0.10.0 in /usr/local/lib/python3.10/dist-packages (from flair) (0.20.3)\n",
            "Collecting janome>=0.4.2 (from flair)\n",
            "  Downloading Janome-0.5.0-py2.py3-none-any.whl (19.7 MB)\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m19.7/19.7 MB\u001b[0m \u001b[31m46.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[?25hCollecting langdetect>=1.0.9 (from flair)\n",
            "  Downloading langdetect-1.0.9.tar.gz (981 kB)\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m981.5/981.5 kB\u001b[0m \u001b[31m67.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[?25h  Preparing metadata (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
            "Requirement already satisfied: lxml>=4.8.0 in /usr/local/lib/python3.10/dist-packages (from flair) (4.9.4)\n",
            "Requirement already satisfied: matplotlib>=2.2.3 in /usr/local/lib/python3.10/dist-packages (from flair) (3.7.1)\n",
            "Requirement already satisfied: more-itertools>=8.13.0 in /usr/local/lib/python3.10/dist-packages (from flair) (10.1.0)\n",
            "Collecting mpld3>=0.3 (from flair)\n",
            "  Downloading mpld3-0.5.10-py3-none-any.whl (202 kB)\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m202.6/202.6 kB\u001b[0m \u001b[31m23.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[?25hCollecting pptree>=3.1 (from flair)\n",
            "  Downloading pptree-3.1.tar.gz (3.0 kB)\n",
            "  Preparing metadata (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
            "Requirement already satisfied: python-dateutil>=2.8.2 in /usr/local/lib/python3.10/dist-packages (from flair) (2.8.2)\n",
            "Collecting pytorch-revgrad>=0.2.0 (from flair)\n",
            "  Downloading pytorch_revgrad-0.2.0-py3-none-any.whl (4.6 kB)\n",
            "Requirement already satisfied: regex>=2022.1.18 in /usr/local/lib/python3.10/dist-packages (from flair) (2023.12.25)\n",
            "Requirement already satisfied: scikit-learn>=1.0.2 in /usr/local/lib/python3.10/dist-packages (from flair) (1.2.2)\n",
            "Collecting segtok>=1.5.11 (from flair)\n",
            "  Downloading segtok-1.5.11-py3-none-any.whl (24 kB)\n",
            "Collecting sqlitedict>=2.0.0 (from flair)\n",
            "  Downloading sqlitedict-2.1.0.tar.gz (21 kB)\n",
            "  Preparing metadata (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
            "Requirement already satisfied: tabulate>=0.8.10 in /usr/local/lib/python3.10/dist-packages (from flair) (0.9.0)\n",
            "Requirement already satisfied: torch!=1.8,>=1.5.0 in /usr/local/lib/python3.10/dist-packages (from flair) (2.2.1+cu121)\n",
            "Requirement already satisfied: tqdm>=4.63.0 in /usr/local/lib/python3.10/dist-packages (from flair) (4.66.2)\n",
            "Collecting transformer-smaller-training-vocab>=0.2.3 (from flair)\n",
            "  Downloading transformer_smaller_training_vocab-0.3.3-py3-none-any.whl (14 kB)\n",
            "Requirement already satisfied: transformers[sentencepiece]<5.0.0,>=4.18.0 in /usr/local/lib/python3.10/dist-packages (from flair) (4.38.2)\n",
            "Collecting urllib3<2.0.0,>=1.0.0 (from flair)\n",
            "  Downloading urllib3-1.26.18-py2.py3-none-any.whl (143 kB)\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m143.8/143.8 kB\u001b[0m \u001b[31m23.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[?25hCollecting wikipedia-api>=0.5.7 (from flair)\n",
            "  Downloading Wikipedia_API-0.6.0-py3-none-any.whl (14 kB)\n",
            "Collecting semver<4.0.0,>=3.0.0 (from flair)\n",
            "  Downloading semver-3.0.2-py3-none-any.whl (17 kB)\n",
            "Collecting botocore<1.35.0,>=1.34.64 (from boto3>=1.20.27->flair)\n",
            "  Downloading botocore-1.34.64-py3-none-any.whl (12.0 MB)\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m12.0/12.0 MB\u001b[0m \u001b[31m68.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[?25hCollecting jmespath<2.0.0,>=0.7.1 (from boto3>=1.20.27->flair)\n",
            "  Downloading jmespath-1.0.1-py3-none-any.whl (20 kB)\n",
            "Collecting s3transfer<0.11.0,>=0.10.0 (from boto3>=1.20.27->flair)\n",
            "  Downloading s3transfer-0.10.1-py3-none-any.whl (82 kB)\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m82.2/82.2 kB\u001b[0m \u001b[31m13.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[?25hRequirement already satisfied: numpy in /usr/local/lib/python3.10/dist-packages (from bpemb>=0.3.2->flair) (1.25.2)\n",
            "Requirement already satisfied: requests in /usr/local/lib/python3.10/dist-packages (from bpemb>=0.3.2->flair) (2.31.0)\n",
            "Requirement already satisfied: sentencepiece in /usr/local/lib/python3.10/dist-packages (from bpemb>=0.3.2->flair) (0.1.99)\n",
            "Requirement already satisfied: wrapt<2,>=1.10 in /usr/local/lib/python3.10/dist-packages (from deprecated>=1.2.13->flair) (1.14.1)\n",
            "Requirement already satisfied: wcwidth<0.3.0,>=0.2.12 in /usr/local/lib/python3.10/dist-packages (from ftfy>=6.1.0->flair) (0.2.13)\n",
            "Requirement already satisfied: filelock in /usr/local/lib/python3.10/dist-packages (from gdown>=4.4.0->flair) (3.13.1)\n",
            "Requirement already satisfied: six in /usr/local/lib/python3.10/dist-packages (from gdown>=4.4.0->flair) (1.16.0)\n",
            "Requirement already satisfied: beautifulsoup4 in /usr/local/lib/python3.10/dist-packages (from gdown>=4.4.0->flair) (4.12.3)\n",
            "Requirement already satisfied: scipy>=1.7.0 in /usr/local/lib/python3.10/dist-packages (from gensim>=4.2.0->flair) (1.11.4)\n",
            "Requirement already satisfied: smart-open>=1.8.1 in /usr/local/lib/python3.10/dist-packages (from gensim>=4.2.0->flair) (6.4.0)\n",
            "Requirement already satisfied: fsspec>=2023.5.0 in /usr/local/lib/python3.10/dist-packages (from huggingface-hub>=0.10.0->flair) (2023.6.0)\n",
            "Requirement already satisfied: pyyaml>=5.1 in /usr/local/lib/python3.10/dist-packages (from huggingface-hub>=0.10.0->flair) (6.0.1)\n",
            "Requirement already satisfied: typing-extensions>=3.7.4.3 in /usr/local/lib/python3.10/dist-packages (from huggingface-hub>=0.10.0->flair) (4.10.0)\n",
            "Requirement already satisfied: packaging>=20.9 in /usr/local/lib/python3.10/dist-packages (from huggingface-hub>=0.10.0->flair) (24.0)\n",
            "Requirement already satisfied: contourpy>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib>=2.2.3->flair) (1.2.0)\n",
            "Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.10/dist-packages (from matplotlib>=2.2.3->flair) (0.12.1)\n",
            "Requirement already satisfied: fonttools>=4.22.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib>=2.2.3->flair) (4.49.0)\n",
            "Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib>=2.2.3->flair) (1.4.5)\n",
            "Requirement already satisfied: pillow>=6.2.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib>=2.2.3->flair) (9.4.0)\n",
            "Requirement already satisfied: pyparsing>=2.3.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib>=2.2.3->flair) (3.1.2)\n",
            "Requirement already satisfied: jinja2 in /usr/local/lib/python3.10/dist-packages (from mpld3>=0.3->flair) (3.1.3)\n",
            "Requirement already satisfied: joblib>=1.1.1 in /usr/local/lib/python3.10/dist-packages (from scikit-learn>=1.0.2->flair) (1.3.2)\n",
            "Requirement already satisfied: threadpoolctl>=2.0.0 in /usr/local/lib/python3.10/dist-packages (from scikit-learn>=1.0.2->flair) (3.3.0)\n",
            "Requirement already satisfied: sympy in /usr/local/lib/python3.10/dist-packages (from torch!=1.8,>=1.5.0->flair) (1.12)\n",
            "Requirement already satisfied: networkx in /usr/local/lib/python3.10/dist-packages (from torch!=1.8,>=1.5.0->flair) (3.2.1)\n",
            "Collecting nvidia-cuda-nvrtc-cu12==12.1.105 (from torch!=1.8,>=1.5.0->flair)\n",
            "  Downloading nvidia_cuda_nvrtc_cu12-12.1.105-py3-none-manylinux1_x86_64.whl (23.7 MB)\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m23.7/23.7 MB\u001b[0m \u001b[31m25.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[?25hCollecting nvidia-cuda-runtime-cu12==12.1.105 (from torch!=1.8,>=1.5.0->flair)\n",
            "  Downloading nvidia_cuda_runtime_cu12-12.1.105-py3-none-manylinux1_x86_64.whl (823 kB)\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m823.6/823.6 kB\u001b[0m \u001b[31m45.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[?25hCollecting nvidia-cuda-cupti-cu12==12.1.105 (from torch!=1.8,>=1.5.0->flair)\n",
            "  Downloading nvidia_cuda_cupti_cu12-12.1.105-py3-none-manylinux1_x86_64.whl (14.1 MB)\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m14.1/14.1 MB\u001b[0m \u001b[31m72.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[?25hCollecting nvidia-cudnn-cu12==8.9.2.26 (from torch!=1.8,>=1.5.0->flair)\n",
            "  Downloading nvidia_cudnn_cu12-8.9.2.26-py3-none-manylinux1_x86_64.whl (731.7 MB)\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m731.7/731.7 MB\u001b[0m \u001b[31m906.7 kB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[?25hCollecting nvidia-cublas-cu12==12.1.3.1 (from torch!=1.8,>=1.5.0->flair)\n",
            "  Downloading nvidia_cublas_cu12-12.1.3.1-py3-none-manylinux1_x86_64.whl (410.6 MB)\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m410.6/410.6 MB\u001b[0m \u001b[31m3.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[?25hCollecting nvidia-cufft-cu12==11.0.2.54 (from torch!=1.8,>=1.5.0->flair)\n",
            "  Downloading nvidia_cufft_cu12-11.0.2.54-py3-none-manylinux1_x86_64.whl (121.6 MB)\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m121.6/121.6 MB\u001b[0m \u001b[31m8.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[?25hCollecting nvidia-curand-cu12==10.3.2.106 (from torch!=1.8,>=1.5.0->flair)\n",
            "  Downloading nvidia_curand_cu12-10.3.2.106-py3-none-manylinux1_x86_64.whl (56.5 MB)\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m56.5/56.5 MB\u001b[0m \u001b[31m10.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[?25hCollecting nvidia-cusolver-cu12==11.4.5.107 (from torch!=1.8,>=1.5.0->flair)\n",
            "  Downloading nvidia_cusolver_cu12-11.4.5.107-py3-none-manylinux1_x86_64.whl (124.2 MB)\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m124.2/124.2 MB\u001b[0m \u001b[31m8.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[?25hCollecting nvidia-cusparse-cu12==12.1.0.106 (from torch!=1.8,>=1.5.0->flair)\n",
            "  Downloading nvidia_cusparse_cu12-12.1.0.106-py3-none-manylinux1_x86_64.whl (196.0 MB)\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m196.0/196.0 MB\u001b[0m \u001b[31m2.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[?25hCollecting nvidia-nccl-cu12==2.19.3 (from torch!=1.8,>=1.5.0->flair)\n",
            "  Downloading nvidia_nccl_cu12-2.19.3-py3-none-manylinux1_x86_64.whl (166.0 MB)\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m166.0/166.0 MB\u001b[0m \u001b[31m2.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[?25hCollecting nvidia-nvtx-cu12==12.1.105 (from torch!=1.8,>=1.5.0->flair)\n",
            "  Downloading nvidia_nvtx_cu12-12.1.105-py3-none-manylinux1_x86_64.whl (99 kB)\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m99.1/99.1 kB\u001b[0m \u001b[31m15.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[?25hRequirement already satisfied: triton==2.2.0 in /usr/local/lib/python3.10/dist-packages (from torch!=1.8,>=1.5.0->flair) (2.2.0)\n",
            "Collecting nvidia-nvjitlink-cu12 (from nvidia-cusolver-cu12==11.4.5.107->torch!=1.8,>=1.5.0->flair)\n",
            "  Downloading nvidia_nvjitlink_cu12-12.4.99-py3-none-manylinux2014_x86_64.whl (21.1 MB)\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m21.1/21.1 MB\u001b[0m \u001b[31m70.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[?25hRequirement already satisfied: tokenizers<0.19,>=0.14 in /usr/local/lib/python3.10/dist-packages (from transformers[sentencepiece]<5.0.0,>=4.18.0->flair) (0.15.2)\n",
            "Requirement already satisfied: safetensors>=0.4.1 in /usr/local/lib/python3.10/dist-packages (from transformers[sentencepiece]<5.0.0,>=4.18.0->flair) (0.4.2)\n",
            "Requirement already satisfied: protobuf in /usr/local/lib/python3.10/dist-packages (from transformers[sentencepiece]<5.0.0,>=4.18.0->flair) (3.20.3)\n",
            "Collecting accelerate>=0.21.0 (from transformers[sentencepiece]<5.0.0,>=4.18.0->flair)\n",
            "  Downloading accelerate-0.28.0-py3-none-any.whl (290 kB)\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m290.1/290.1 kB\u001b[0m \u001b[31m32.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[?25hRequirement already satisfied: soupsieve>1.2 in /usr/local/lib/python3.10/dist-packages (from beautifulsoup4->gdown>=4.4.0->flair) (2.5)\n",
            "Requirement already satisfied: MarkupSafe>=2.0 in /usr/local/lib/python3.10/dist-packages (from jinja2->mpld3>=0.3->flair) (2.1.5)\n",
            "Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.10/dist-packages (from requests->bpemb>=0.3.2->flair) (3.3.2)\n",
            "Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.10/dist-packages (from requests->bpemb>=0.3.2->flair) (3.6)\n",
            "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.10/dist-packages (from requests->bpemb>=0.3.2->flair) (2024.2.2)\n",
            "Requirement already satisfied: PySocks!=1.5.7,>=1.5.6 in /usr/local/lib/python3.10/dist-packages (from requests->bpemb>=0.3.2->flair) (1.7.1)\n",
            "Requirement already satisfied: mpmath>=0.19 in /usr/local/lib/python3.10/dist-packages (from sympy->torch!=1.8,>=1.5.0->flair) (1.3.0)\n",
            "Requirement already satisfied: psutil in /usr/local/lib/python3.10/dist-packages (from accelerate>=0.21.0->transformers[sentencepiece]<5.0.0,>=4.18.0->flair) (5.9.5)\n",
            "Building wheels for collected packages: langdetect, pptree, sqlitedict\n",
            "  Building wheel for langdetect (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
            "  Created wheel for langdetect: filename=langdetect-1.0.9-py3-none-any.whl size=993227 sha256=9da87eaaff56d6d1421c337ae61089e29874a2de99038123b209c2cf6ffe4791\n",
            "  Stored in directory: /root/.cache/pip/wheels/95/03/7d/59ea870c70ce4e5a370638b5462a7711ab78fba2f655d05106\n",
            "  Building wheel for pptree (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
            "  Created wheel for pptree: filename=pptree-3.1-py3-none-any.whl size=4609 sha256=be019012224ff0981466d5ef57193c243fbbc1542c10b46f3ed8f17e84f74b0e\n",
            "  Stored in directory: /root/.cache/pip/wheels/9f/b6/0e/6f26eb9e6eb53ff2107a7888d72b5a6a597593956113037828\n",
            "  Building wheel for sqlitedict (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
            "  Created wheel for sqlitedict: filename=sqlitedict-2.1.0-py3-none-any.whl size=16862 sha256=056a323511a15e5bdbb990ad53b061cdb301623fdbf4a77ead3f71402b27bf97\n",
            "  Stored in directory: /root/.cache/pip/wheels/79/d6/e7/304e0e6cb2221022c26d8161f7c23cd4f259a9e41e8bbcfabd\n",
            "Successfully built langdetect pptree sqlitedict\n",
            "Installing collected packages: sqlitedict, pptree, janome, urllib3, semver, segtok, nvidia-nvtx-cu12, nvidia-nvjitlink-cu12, nvidia-nccl-cu12, nvidia-curand-cu12, nvidia-cufft-cu12, nvidia-cuda-runtime-cu12, nvidia-cuda-nvrtc-cu12, nvidia-cuda-cupti-cu12, nvidia-cublas-cu12, langdetect, jmespath, ftfy, deprecated, conllu, nvidia-cusparse-cu12, nvidia-cudnn-cu12, botocore, wikipedia-api, s3transfer, nvidia-cusolver-cu12, mpld3, bpemb, boto3, pytorch-revgrad, accelerate, transformer-smaller-training-vocab, flair\n",
            "  Attempting uninstall: urllib3\n",
            "    Found existing installation: urllib3 2.0.7\n",
            "    Uninstalling urllib3-2.0.7:\n",
            "      Successfully uninstalled urllib3-2.0.7\n",
            "Successfully installed accelerate-0.28.0 boto3-1.34.64 botocore-1.34.64 bpemb-0.3.4 conllu-4.5.3 deprecated-1.2.14 flair-0.13.1 ftfy-6.2.0 janome-0.5.0 jmespath-1.0.1 langdetect-1.0.9 mpld3-0.5.10 nvidia-cublas-cu12-12.1.3.1 nvidia-cuda-cupti-cu12-12.1.105 nvidia-cuda-nvrtc-cu12-12.1.105 nvidia-cuda-runtime-cu12-12.1.105 nvidia-cudnn-cu12-8.9.2.26 nvidia-cufft-cu12-11.0.2.54 nvidia-curand-cu12-10.3.2.106 nvidia-cusolver-cu12-11.4.5.107 nvidia-cusparse-cu12-12.1.0.106 nvidia-nccl-cu12-2.19.3 nvidia-nvjitlink-cu12-12.4.99 nvidia-nvtx-cu12-12.1.105 pptree-3.1 pytorch-revgrad-0.2.0 s3transfer-0.10.1 segtok-1.5.11 semver-3.0.2 sqlitedict-2.1.0 transformer-smaller-training-vocab-0.3.3 urllib3-1.26.18 wikipedia-api-0.6.0\n"
          ]
        },
        {
          "output_type": "display_data",
          "data": {
            "application/vnd.colab-display-data+json": {
              "pip_warning": {
                "packages": [
                  "urllib3"
                ]
              },
              "id": "dfdc4a89fa71429587bc109f13908415"
            }
          },
          "metadata": {}
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "import os\n",
        "\n",
        "os.environ[\"KERAS_BACKEND\"] = \"tensorflow\"\n",
        "\n",
        "import os\n",
        "import keras\n",
        "import numpy as np\n",
        "import tensorflow as tf\n",
        "from keras import layers\n",
        "from datasets import load_dataset\n",
        "from collections import Counter\n",
        "from conlleval import evaluate\n",
        "\n",
        "import pandas as pd\n",
        "from google.colab import files\n",
        "import matplotlib.pyplot as plt\n",
        "\n",
        "from transformers import AutoModel, AutoTokenizer\n",
        "\n",
        "import logging\n",
        "from typing import Optional, List, Tuple, Set\n",
        "from presidio_analyzer import (\n",
        "    RecognizerResult,\n",
        "    EntityRecognizer,\n",
        "    AnalysisExplanation,\n",
        ")\n",
        "from presidio_analyzer.nlp_engine import NlpArtifacts\n",
        "\n",
        "from flair.data import Sentence\n",
        "from flair.models import SequenceTagger\n"
      ],
      "metadata": {
        "id": "9FxNt5pZY0e2"
      },
      "execution_count": 19,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "class TransformerBlock(layers.Layer):\n",
        "    def __init__(self, embed_dim, num_heads, ff_dim, rate=0.1):\n",
        "        super().__init__()\n",
        "        self.att = keras.layers.MultiHeadAttention(\n",
        "            num_heads=num_heads, key_dim=embed_dim\n",
        "        )\n",
        "        self.ffn = keras.Sequential(\n",
        "            [\n",
        "                keras.layers.Dense(ff_dim, activation=\"relu\"),\n",
        "                keras.layers.Dense(embed_dim),\n",
        "            ]\n",
        "        )\n",
        "        self.layernorm1 = keras.layers.LayerNormalization(epsilon=1e-6)\n",
        "        self.layernorm2 = keras.layers.LayerNormalization(epsilon=1e-6)\n",
        "        self.dropout1 = keras.layers.Dropout(rate)\n",
        "        self.dropout2 = keras.layers.Dropout(rate)\n",
        "\n",
        "    def call(self, inputs, training=False):\n",
        "        attn_output = self.att(inputs, inputs)\n",
        "        attn_output = self.dropout1(attn_output, training=training)\n",
        "        out1 = self.layernorm1(inputs + attn_output)\n",
        "        ffn_output = self.ffn(out1)\n",
        "        ffn_output = self.dropout2(ffn_output, training=training)\n",
        "        return self.layernorm2(out1 + ffn_output)\n"
      ],
      "metadata": {
        "id": "a2ro_nntY-FC"
      },
      "execution_count": 4,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "class TokenAndPositionEmbedding(layers.Layer):\n",
        "    def __init__(self, maxlen, vocab_size, embed_dim):\n",
        "        super().__init__()\n",
        "        self.token_emb = keras.layers.Embedding(\n",
        "            input_dim=vocab_size, output_dim=embed_dim\n",
        "        )\n",
        "        self.pos_emb = keras.layers.Embedding(input_dim=maxlen, output_dim=embed_dim)\n",
        "\n",
        "    def call(self, inputs):\n",
        "        maxlen = tf.shape(inputs)[-1]\n",
        "        positions = tf.range(start=0, limit=maxlen, delta=1)\n",
        "        position_embeddings = self.pos_emb(positions)\n",
        "        token_embeddings = self.token_emb(inputs)\n",
        "        return token_embeddings + position_embeddings"
      ],
      "metadata": {
        "id": "jg0WkejPZBn8"
      },
      "execution_count": 5,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "class NERModel(keras.Model):\n",
        "    def __init__(\n",
        "        self, num_tags, vocab_size, maxlen=128, embed_dim=32, num_heads=2, ff_dim=32\n",
        "    ):\n",
        "        super().__init__()\n",
        "        self.embedding_layer = TokenAndPositionEmbedding(maxlen, vocab_size, embed_dim)\n",
        "        self.transformer_block = TransformerBlock(embed_dim, num_heads, ff_dim)\n",
        "        self.dropout1 = layers.Dropout(0.1)\n",
        "        self.ff = layers.Dense(ff_dim, activation=\"relu\")\n",
        "        self.dropout2 = layers.Dropout(0.1)\n",
        "        self.ff_final = layers.Dense(num_tags, activation=\"softmax\")\n",
        "\n",
        "    def call(self, inputs, training=False):\n",
        "        x = self.embedding_layer(inputs)\n",
        "        x = self.transformer_block(x)\n",
        "        x = self.dropout1(x, training=training)\n",
        "        x = self.ff(x)\n",
        "        x = self.dropout2(x, training=training)\n",
        "        x = self.ff_final(x)\n",
        "        return x"
      ],
      "metadata": {
        "id": "HeMvk_zKZFXy"
      },
      "execution_count": 6,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "conll_data = load_dataset(\"conll2003\")\n"
      ],
      "metadata": {
        "id": "weGmhigxZMaT"
      },
      "execution_count": 7,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "def dataset_to_dataframe(dataset):\n",
        "    data_dict = {key: dataset[key] for key in dataset.features}\n",
        "    return pd.DataFrame(data_dict)\n",
        "\n",
        "# Combine all splits (train, validation, test) into a single DataFrame\n",
        "conll_df = pd.concat([dataset_to_dataframe(conll_data[split]) for split in conll_data.keys()])"
      ],
      "metadata": {
        "id": "SEvvIFAgdcAF"
      },
      "execution_count": 8,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "csv_file_path = \"conll_data.csv\"\n",
        "conll_df.to_csv(csv_file_path, index=False)\n",
        "\n",
        "# Download the CSV file to local machine\n",
        "\n",
        "files.download(csv_file_path)"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 17
        },
        "id": "UejgBp-Ng_l_",
        "outputId": "98b45e90-3b08-4857-f7eb-42e9a319eb29"
      },
      "execution_count": 7,
      "outputs": [
        {
          "output_type": "display_data",
          "data": {
            "text/plain": [
              "<IPython.core.display.Javascript object>"
            ],
            "application/javascript": [
              "\n",
              "    async function download(id, filename, size) {\n",
              "      if (!google.colab.kernel.accessAllowed) {\n",
              "        return;\n",
              "      }\n",
              "      const div = document.createElement('div');\n",
              "      const label = document.createElement('label');\n",
              "      label.textContent = `Downloading \"${filename}\": `;\n",
              "      div.appendChild(label);\n",
              "      const progress = document.createElement('progress');\n",
              "      progress.max = size;\n",
              "      div.appendChild(progress);\n",
              "      document.body.appendChild(div);\n",
              "\n",
              "      const buffers = [];\n",
              "      let downloaded = 0;\n",
              "\n",
              "      const channel = await google.colab.kernel.comms.open(id);\n",
              "      // Send a message to notify the kernel that we're ready.\n",
              "      channel.send({})\n",
              "\n",
              "      for await (const message of channel.messages) {\n",
              "        // Send a message to notify the kernel that we're ready.\n",
              "        channel.send({})\n",
              "        if (message.buffers) {\n",
              "          for (const buffer of message.buffers) {\n",
              "            buffers.push(buffer);\n",
              "            downloaded += buffer.byteLength;\n",
              "            progress.value = downloaded;\n",
              "          }\n",
              "        }\n",
              "      }\n",
              "      const blob = new Blob(buffers, {type: 'application/binary'});\n",
              "      const a = document.createElement('a');\n",
              "      a.href = window.URL.createObjectURL(blob);\n",
              "      a.download = filename;\n",
              "      div.appendChild(a);\n",
              "      a.click();\n",
              "      div.remove();\n",
              "    }\n",
              "  "
            ]
          },
          "metadata": {}
        },
        {
          "output_type": "display_data",
          "data": {
            "text/plain": [
              "<IPython.core.display.Javascript object>"
            ],
            "application/javascript": [
              "download(\"download_e9dfb994-0d94-46a0-a16d-296a01070e4a\", \"conll_data.csv\", 6111395)"
            ]
          },
          "metadata": {}
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "print(conll_df.head())"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "NRyX6MExgwi7",
        "outputId": "78702706-75b5-4d4e-9cf7-08f21bb99dcb"
      },
      "execution_count": 8,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "  id                                             tokens  \\\n",
            "0  0  [EU, rejects, German, call, to, boycott, Briti...   \n",
            "1  1                                 [Peter, Blackburn]   \n",
            "2  2                             [BRUSSELS, 1996-08-22]   \n",
            "3  3  [The, European, Commission, said, on, Thursday...   \n",
            "4  4  [Germany, 's, representative, to, the, Europea...   \n",
            "\n",
            "                                            pos_tags  \\\n",
            "0                [22, 42, 16, 21, 35, 37, 16, 21, 7]   \n",
            "1                                           [22, 22]   \n",
            "2                                           [22, 11]   \n",
            "3  [12, 22, 22, 38, 15, 22, 28, 38, 15, 16, 21, 3...   \n",
            "4  [22, 27, 21, 35, 12, 22, 22, 27, 16, 21, 22, 2...   \n",
            "\n",
            "                                          chunk_tags  \\\n",
            "0                [11, 21, 11, 12, 21, 22, 11, 12, 0]   \n",
            "1                                           [11, 12]   \n",
            "2                                           [11, 12]   \n",
            "3  [11, 12, 12, 21, 13, 11, 11, 21, 13, 11, 12, 1...   \n",
            "4  [11, 11, 12, 13, 11, 12, 12, 11, 12, 12, 12, 1...   \n",
            "\n",
            "                                            ner_tags  \n",
            "0                        [3, 0, 7, 0, 0, 0, 7, 0, 0]  \n",
            "1                                             [1, 2]  \n",
            "2                                             [5, 0]  \n",
            "3  [0, 3, 4, 0, 0, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, ...  \n",
            "4  [5, 0, 0, 0, 0, 3, 4, 0, 0, 0, 1, 2, 0, 0, 0, ...  \n"
          ]
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "print(conll_df.describe())"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "LAiHg17QhO-2",
        "outputId": "065d13c3-c8ea-40f3-f84a-2fc4f2332ff2"
      },
      "execution_count": 10,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "           id        tokens  pos_tags chunk_tags ner_tags\n",
            "count   20744         20744     20744      20744    20744\n",
            "unique  14041         18731     13126      11282     8047\n",
            "top         0  [Scorers, :]  [22, 11]   [11, 12]   [5, 0]\n",
            "freq        3            30       611       1290      955\n"
          ]
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "print(conll_df.dtypes)"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "9LwwJ8zbhVlk",
        "outputId": "c32dde53-bf78-4f94-aa32-1cdef388099e"
      },
      "execution_count": 11,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "id            object\n",
            "tokens        object\n",
            "pos_tags      object\n",
            "chunk_tags    object\n",
            "ner_tags      object\n",
            "dtype: object\n"
          ]
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "print(conll_df.isnull().sum())"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "njbG34F3hl5D",
        "outputId": "81cb8929-f9a0-4a07-d1f6-f306d2ffc7c0"
      },
      "execution_count": 12,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "id            0\n",
            "tokens        0\n",
            "pos_tags      0\n",
            "chunk_tags    0\n",
            "ner_tags      0\n",
            "dtype: int64\n"
          ]
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "label_counts = conll_df['ner_tags'].value_counts()\n",
        "print(label_counts)"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "98pX56RShpgR",
        "outputId": "18ef0b75-727b-4f2b-8ae9-6b4415e8e17a"
      },
      "execution_count": 13,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "[5, 0]                                                                                                                                                 955\n",
            "[3, 0, 0, 0, 0, 0, 0, 0]                                                                                                                               663\n",
            "[0, 1, 2, 0, 5, 0, 0]                                                                                                                                  582\n",
            "[0, 0]                                                                                                                                                 409\n",
            "[3, 0, 3, 0]                                                                                                                                           352\n",
            "                                                                                                                                                      ... \n",
            "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0]                                                                                                         1\n",
            "[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]      1\n",
            "[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 3, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]                                 1\n",
            "[0, 0, 0, 0, 0, 0, 0, 3, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 1, 2, 0]                                                                           1\n",
            "[0, 0, 0, 3, 4, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 8, 8, 0, 0, 0, 0, 0, 0, 0, 1, 0]                              1\n",
            "Name: ner_tags, Length: 8047, dtype: int64\n"
          ]
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "top_10_labels = label_counts.head(10)\n",
        "\n",
        "# Plot the distribution of the top 10 NER tags\n",
        "plt.figure(figsize=(10, 6))\n",
        "top_10_labels.plot(kind='bar')\n",
        "plt.title('Top 10 Most Common NER Tags')\n",
        "plt.xlabel('NER Tag')\n",
        "plt.ylabel('Count')\n",
        "plt.show()\n"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 710
        },
        "id": "Yd71HpRQhuoZ",
        "outputId": "066c4b14-3edf-4139-e665-cdbf95dac172"
      },
      "execution_count": 14,
      "outputs": [
        {
          "output_type": "display_data",
          "data": {
            "text/plain": [
              "<Figure size 1000x600 with 1 Axes>"
            ],
            "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1sAAAK1CAYAAAA+BfRDAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABf+0lEQVR4nO3deVxV1f7/8fcBlUEFnJjKiXIih0xTsa6RcsW0rna7eS3ralmUqTmmeW/OlWmaZVkOZdo3Lctvg0OChpqWKESaRmqDlKaBclEwSRnO/v3Rz/P1BBTnyOYMvJ6PB4+HZ6/FOZ+zXBvOm7332hbDMAwBAAAAACqVj6sLAAAAAABvRNgCAAAAABMQtgAAAADABIQtAAAAADABYQsAAAAATEDYAgAAAAATELYAAAAAwASELQAAAAAwAWELAAAAAExA2AIAAAAAExC2AKACLBZLhb62b99uei2vvPKK7rzzTjVp0kQWi0VDhw4tt++ZM2eUkJCgRo0aqXbt2rr55pv1xRdfVOh1YmNjZbFY1KJFizLbt2zZYnvfa9eudeat/KmPPvpI06dPd/j73n//fd1yyy1q2LChatWqpcjISA0cOFBbt26t/CK9yMX/89tuu61U2w8//CCLxaJ58+bZtm3fvv0P94e3337b1rdZs2Z2bbVr11aXLl30xhtv/GldQ4cOrdD+90f7AgC4Qg1XFwAAnuB//ud/7B6/8cYb2rJlS6ntbdq0Mb2WOXPm6OzZs+rSpYt+/vnncvtZrVb169dPX375pR577DE1bNhQL7/8smJjY5Wenl5uiLqUv7+/vvvuO6WmpqpLly52batWrZK/v7/Onz9/2e+pPB999JEWLVpU4cBlGIbuv/9+rVixQh07dtS4ceMUHh6un3/+We+//7569eqlzz77TN27dzetZm+wYcMGpaenq1OnThXq/+ijj+r6668vtT0mJsbu8bXXXqvx48dLkn7++We9+uqrGjJkiC5cuKAHH3yw3Od/6KGHFBcXZ3ucmZmpqVOnKiEhQX/5y19s26+66qoK1QsAVcYAADhsxIgRhqt+hP7www+G1Wo1DMMwateubQwZMqTMfmvWrDEkGe+++65t28mTJ42QkBDjrrvu+tPXuemmm4xrrrnGaNWqlTFmzBi7tl9//dUICgoy7rjjjlKvUZkcHednn33WkGSMGTPGNkaXeuONN4w9e/ZUZole5aabbjKaNGli1KtXz7jtttvs2jIzMw1JxrPPPmvbtm3btgr//zdt2tTo16+f3baTJ08aderUMdq0aeNQnWlpaYYk4/XXX3fo+wCgqnEaIQBUknPnzmn8+PFq3Lix/Pz81KpVK82bN0+GYdj1s1gsGjlypFatWqVWrVrJ399fnTp10o4dOyr0Ok2bNpXFYvnTfmvXrlVYWJj+/ve/27Y1atRIAwcO1IcffqgLFy5U6PXuuusurVmzRlar1bZt/fr1Kigo0MCBA8v8nr179+qWW25RUFCQ6tSpo169emn37t12fYqKijRjxgy1aNFC/v7+atCggW688UZt2bJF0m+nji1atEiS/Wmc5fn11181e/ZstW7dWvPmzSuz77333mt3hO7IkSO68847Vb9+fQUGBqpbt27auHGj3fdcPFXunXfe0YwZM3TFFVeobt26+sc//qG8vDxduHBBY8aMUWhoqOrUqaP77ruv1Nhe/D9/9913FR0drYCAAMXExOjAgQOSpCVLlujqq6+Wv7+/YmNj9cMPP5Sq/d1331WnTp0UEBCghg0b6p577tHx48ft+gwdOlR16tTR8ePHNWDAANWpU0eNGjXShAkTVFJSUu7YXapu3boaO3as1q9fX+FTTp3VqFEjtW7dWt9///1lP9f+/fs1dOhQRUVFyd/fX+Hh4br//vv13//+t1Tf7du3q3PnzvL399dVV12lJUuWaPr06aXmzJYtW3TjjTcqJCREderUUatWrfTvf//7smsFUH1wGiEAVALDMPS3v/1N27Zt07Bhw3TttdcqKSlJjz32mI4fP64FCxbY9f/kk0+0Zs0aPfroo/Lz89PLL7+sPn36KDU1VW3btq2Umvbu3avrrrtOPj72f1fr0qWLli5dqm+++Ubt2rX70+e5++67NX36dG3fvl09e/aUJK1evVq9evVSaGhoqf4ZGRn6y1/+oqCgIE2cOFE1a9bUkiVLFBsbq08++URdu3aVJE2fPl2zZ8/WAw88oC5duig/P1+ff/65vvjiC/31r3/VQw89pBMnTpR5umZZPv30U+Xm5mrMmDHy9fX90/7Z2dnq3r27CgoK9Oijj6pBgwZauXKl/va3v2nt2rW6/fbb7frPnj1bAQEBevzxx/Xdd9/pxRdfVM2aNeXj46PTp09r+vTp2r17t1asWKHmzZtr6tSpdt+/c+dOrVu3TiNGjLA936233qqJEyfq5Zdf1iOPPKLTp09r7ty5uv/+++2uL1uxYoXuu+8+XX/99Zo9e7ays7P1wgsv6LPPPtPevXsVEhJi61tSUqL4+Hh17dpV8+bN08cff6z58+frqquu0vDhw/90XCRp9OjRWrBggaZPn65169b9af+zZ88qJyen1PYGDRr8YUAuLi7WTz/9pHr16lWorj+yZcsWHTlyRPfdd5/Cw8OVkZGhpUuXKiMjQ7t377bVsXfvXvXp00cRERGaMWOGSkpKNHPmTDVq1Mju+TIyMnTrrbeqffv2mjlzpvz8/PTdd9/ps88+u+xaAVQjrj60BgCe6Pent33wwQeGJOPJJ5+06/ePf/zDsFgsxnfffWfbJsmQZHz++ee2bT/++KPh7+9v3H777Q7V8UenEdauXdu4//77S23fuHGjIclITEz8w+e+eBqhYRhG586djWHDhhmGYRinT582atWqZaxcubLM08gGDBhg1KpVy/j+++9t206cOGHUrVvX6NGjh21bhw4dSp1W9nuOnEb4wgsvGJKM999/v0L9x4wZY0gydu7cadt29uxZo3nz5kazZs2MkpISwzD+71S5tm3bGoWFhba+d911l2GxWIxbbrnF7nljYmKMpk2b2m2TZPj5+RmZmZm2bUuWLDEkGeHh4UZ+fr5t++TJkw1Jtr6FhYVGaGio0bZtW+PXX3+19duwYYMhyZg6dapt25AhQwxJxsyZM+1ev2PHjkanTp3+dEwu/T+fMWOGIclIT083DOOPTyMs7+vnn3+29W3atKnRu3dv49SpU8apU6eMAwcOGPfee68hyRgxYsSf1napsk4jLCgoKNXvrbfeMiQZO3bssG277bbbjMDAQOP48eO2bd9++61Ro0YNu7m2YMECQ5Jx6tQph2oDgEtxGiEAVIKPPvpIvr6+evTRR+22jx8/XoZhaNOmTXbbY2Ji7BYfaNKkifr376+kpKQKn+71Z3799Vf5+fmV2u7v729rr6i7775b7733ngoLC7V27Vr5+vqWOvIj/XZUZfPmzRowYICioqJs2yMiInT33Xfr008/VX5+viQpJCREGRkZ+vbbbx19a2W6+Lx169atUP+PPvpIXbp00Y033mjbVqdOHSUkJOiHH37Q119/bdf/X//6l2rWrGl73LVrV9uCHJfq2rWrjh07puLiYrvtvXr1UrNmzez6SdIdd9xhV/PF7UeOHJEkff755zp58qQeeeQR2/+dJPXr10+tW7cuddqjJD388MN2j//yl7/Ynq+iRo8erXr16mnGjBl/2nfq1KnasmVLqa/69evb9du8ebMaNWqkRo0aqV27dvqf//kf3XfffXr22Wcdqq0sAQEBtn+fP39eOTk56tatmyTZTocsKSnRxx9/rAEDBigyMtLW/+qrr9Ytt9xi93wXjxZ++OGHdqfQAoAjCFsAUAl+/PFHRUZGlvqgf3F1wh9//NFue1krAbZs2VIFBQU6depUpdQUEBBQ5nVZF1cPvPTD6Z8ZNGiQ8vLytGnTJq1atUq33nprmaHm1KlTKigoUKtWrUq1tWnTRlarVceOHZMkzZw5U2fOnFHLli3Vrl07PfbYY9q/f3+Fa/q9oKAgSb+d0lYRP/74Y7l1Xmy/VJMmTeweBwcHS5IaN25carvValVeXp7T3y9Jp0+ftqujrFpbt25dqk5/f/9Sp8TVq1fP9nwVFRwcrDFjxmjdunXau3fvH/Zt166d4uLiSn3VqlXLrl/Xrl21ZcsWJSYmat68eQoJCdHp06dL9XNGbm6uRo8erbCwMAUEBKhRo0Zq3ry5JNn+L06ePKlff/1VV199danv//22f/7zn7rhhhv0wAMPKCwsTIMGDdI777xD8ALgEMIWAHipiIiIMpeGv7jt0r/sV+S5YmNjNX/+fO3YsUN33333ZdfXo0cPff/991q+fLnatm2rV199Vdddd51effVVp56vdevWkmRbdKKylXcdWHnbjd8tjHK5319RFbleraJGjx6tkJCQCh3dqoiGDRsqLi5O8fHxGj9+vN5880198MEHeuGFFy77uQcOHKhly5bp4Ycf1nvvvafNmzcrMTFRkpwKSAEBAdqxY4c+/vhj3Xvvvdq/f7/++c9/6q9//WulHX0G4P0IWwBQCZo2baoTJ06UOqpy6NAhW/ulyjp17ptvvlFgYGCpoxLOuvbaa/XFF1+U+qC5Z88eBQYGqmXLlg493913362dO3cqKChIffv2LbNPo0aNFBgYqMOHD5dqO3TokHx8fOyO5NSvX1/33Xef3nrrLR07dkzt27e3u6dWRVZdvOjGG29UvXr19NZbb1Xow3DTpk3LrfNiuzu4WEdZtR4+fNjUOi8e3frwww//9OiWM/r166ebbrpJTz/9tM6dO+f085w+fVrJycl6/PHHNWPGDN1+++3661//ancqqySFhoba7h33e2Vt8/HxUa9evfTcc8/p66+/1lNPPaWtW7dq27ZtTtcKoHohbAFAJejbt69KSkr00ksv2W1fsGCBLBZLqetBUlJS7JbVPnbsmD788EP17t270o5M/OMf/1B2drbee+8927acnBy9++67uu2228q8nuvPnm/atGl6+eWXyz3ty9fXV71799aHH35ot3x5dna2Vq9erRtvvNF2ut/vl+SuU6eOrr76artTH2vXri1JOnPmzJ/WFxgYqEmTJungwYOaNGlSmUeG3nzzTaWmpkr67f8sNTVVKSkptvZz585p6dKlatasmaKjo//0NatC586dFRoaqsWLF9uNzaZNm3Tw4EH169fP1NcfM2aMQkJCNHPmTFOef9KkSfrvf/+rZcuWOf0cF/eZ3/+fP//886X6xcXF6YMPPtCJEyds27/77rtS11Xm5uaWep1rr71Wkip82wQAYOl3AKgEt912m26++Wb95z//0Q8//KAOHTpo8+bN+vDDDzVmzBhdddVVdv3btm2r+Ph4u6XfJVXodK3169fryy+/lPTbvar279+vJ598UpL0t7/9Te3bt5f0Wzjq1q2b7rvvPn399ddq2LChXn75ZZWUlDh1WlhwcLDdUafyPPnkk7b7Ez3yyCOqUaOGlixZogsXLmju3Lm2ftHR0YqNjVWnTp1Uv359ff7551q7dq1Gjhxp63NxEZFHH31U8fHx8vX11aBBg8p97ccee0wZGRmaP3++tm3bpn/84x8KDw9XVlaWPvjgA6WmpmrXrl2SpMcff1xvvfWWbrnlFj366KOqX7++Vq5cqczMTP3v//5vqSXzXaVmzZqaM2eO7rvvPt1000266667bEu/N2vWTGPHjjX19YODgzV69Og/nDM7d+60XQt4qfbt29vmY3luueUWtW3bVs8995xGjBhhtwhJRQUFBalHjx6aO3euioqKdMUVV2jz5s3KzMws1Xf69OnavHmzbrjhBg0fPtz2R5K2bdtq3759tn4zZ87Ujh071K9fPzVt2lQnT57Uyy+/rCuvvNJuURUA+EOuXAoRADxVWUuSnz171hg7dqwRGRlp1KxZ02jRooXx7LPPGlar1a6f/v9S12+++abRokULw8/Pz+jYsaOxbdu2Cr32xeW9y/q6dClswzCM3NxcY9iwYUaDBg2MwMBA46abbjLS0tIq9DqXLgNenrKWfjcMw/jiiy+M+Ph4o06dOkZgYKBx8803G7t27bLr8+STTxpdunQxQkJCjICAAKN169bGU089Zbe8enFxsTFq1CijUaNGhsViqfAy8GvXrjV69+5t1K9f36hRo4YRERFh/POf/zS2b99u1+/77783/vGPfxghISGGv7+/0aVLF2PDhg0Veo+vv/66IanUeE6bNq3UkuEqY3nzspZS/6PXW7NmjdGxY0fDz8/PqF+/vjF48GDjp59+suszZMgQo3bt2qXG42JNf6a8//PTp08bwcHBDi/9Pm3aNFvfpk2blrvU/4oVK8qcv+Upa+n3n376ybj99tuNkJAQIzg42LjzzjuNEydOlKrDMAwjOTnZ6Nixo1GrVi3jqquuMl599VVj/Pjxhr+/v12f/v37G5GRkUatWrWMyMhI46677jK++eabCtUIAIZhGBbDcPIKXACAUywWi0aMGFHqlEMArjNgwIBKvRUBAEhcswUAAKqZ399j7ttvv9VHH32k2NhY1xQEwGtxzRYAAKhWoqKiNHToUEVFRenHH3/UK6+8olq1amnixImuLg2AlyFsAQCAaqVPnz566623lJWVJT8/P8XExOjpp58u82bjAHA5uGYLAAAAAEzg0mu2duzYodtuu02RkZGyWCz64IMP7NoNw9DUqVMVERGhgIAAxcXFlbpwNTc3V4MHD1ZQUJBCQkI0bNgw/fLLL3Z99u/fr7/85S/y9/dX48aN7ZYeBgAAAAAzuDRsnTt3Th06dNCiRYvKbJ87d64WLlyoxYsXa8+ePapdu7bi4+Pt7uUxePBgZWRkaMuWLdqwYYN27NihhIQEW3t+fr569+6tpk2bKj09Xc8++6ymT5+upUuXmv7+AAAAAFRfbnMaocVi0fvvv68BAwZI+u2oVmRkpMaPH68JEyZIkvLy8hQWFqYVK1Zo0KBBOnjwoKKjo5WWlqbOnTtLkhITE9W3b1/99NNPioyM1CuvvKL//Oc/ysrKUq1atST9diPLDz74QIcOHapQbVarVSdOnFDdunVlsVgq/80DAAAA8AiGYejs2bOKjIyUj88fH7ty2wUyMjMzlZWVpbi4ONu24OBgde3aVSkpKRo0aJBSUlIUEhJiC1qSFBcXJx8fH+3Zs0e33367UlJS1KNHD1vQkqT4+HjNmTNHp0+fVr169Uq99oULF3ThwgXb4+PHjys6OtqkdwoAAADA0xw7dkxXXnnlH/Zx27CVlZUlSQoLC7PbHhYWZmvLyspSaGioXXuNGjVUv359uz7Nmzcv9RwX28oKW7Nnz9aMGTNKbT927JiCgoKcfEcAAAAAPF1+fr4aN26sunXr/mlftw1brjR58mSNGzfO9vjigAYFBRG2AAAAAFTo8iKXLpDxR8LDwyVJ2dnZdtuzs7NtbeHh4Tp58qRde3FxsXJzc+36lPUcl77G7/n5+dmCFQELAAAAgDPcNmw1b95c4eHhSk5Otm3Lz8/Xnj17FBMTI0mKiYnRmTNnlJ6ebuuzdetWWa1Wde3a1dZnx44dKioqsvXZsmWLWrVqVeYphAAAAABQGVwatn755Rft27dP+/btk/Tbohj79u3T0aNHZbFYNGbMGD355JNat26dDhw4oH/961+KjIy0rVjYpk0b9enTRw8++KBSU1P12WefaeTIkRo0aJAiIyMlSXfffbdq1aqlYcOGKSMjQ2vWrNELL7xgd5ogAAAAAFQ2ly79vn37dt18882ltg8ZMkQrVqyQYRiaNm2ali5dqjNnzujGG2/Uyy+/rJYtW9r65ubmauTIkVq/fr18fHx0xx13aOHChapTp46tz/79+zVixAilpaWpYcOGGjVqlCZNmlThOvPz8xUcHKy8vDxOKQQAAACqMUeygdvcZ8udEbYAAAAASI5lA7e9ZgsAAAAAPBlhCwAAAABMQNgCAAAAABMQtgAAAADABIQtAAAAADABYQsAAAAATEDYAgAAAAATELYAAAAAwASELQAAAAAwAWELAAAAAExA2AIAAAAAExC2AAAAAMAEhC0AAAAAMAFhCwAAAABMUMPVBVRXzR7f6OoSyvXDM/1cXQIAAADg8TiyBQAAAAAmIGwBAAAAgAkIWwAAAABgAsIWAAAAAJiAsAUAAAAAJiBsAQAAAIAJCFsAAAAAYALCFgAAAACYgLAFAAAAACYgbAEAAACACQhbAAAAAGACwhYAAAAAmICwBQAAAAAmIGwBAAAAgAkIWwAAAABgAsIWAAAAAJiAsAUAAAAAJiBsAQAAAIAJCFsAAAAAYALCFgAAAACYgLAFAAAAACYgbAEAAACACQhbAAAAAGACwhYAAAAAmICwBQAAAAAmIGwBAAAAgAkIWwAAAABgAsIWAAAAAJiAsAUAAAAAJiBsAQAAAIAJCFsAAAAAYALCFgAAAACYgLAFAAAAACYgbAEAAACACQhbAAAAAGACwhYAAAAAmICwBQAAAAAmIGwBAAAAgAkIWwAAAABgAsIWAAAAAJiAsAUAAAAAJiBsAQAAAIAJCFsAAAAAYALCFgAAAACYgLAFAAAAACYgbAEAAACACQhbAAAAAGACwhYAAAAAmICwBQAAAAAmIGwBAAAAgAkIWwAAAABgAsIWAAAAAJiAsAUAAAAAJiBsAQAAAIAJCFsAAAAAYALCFgAAAACYgLAFAAAAACYgbAEAAACACQhbAAAAAGACwhYAAAAAmICwBQAAAAAmIGwBAAAAgAkIWwAAAABgAsIWAAAAAJiAsAUAAAAAJiBsAQAAAIAJ3DpslZSUaMqUKWrevLkCAgJ01VVXadasWTIMw9bHMAxNnTpVERERCggIUFxcnL799lu758nNzdXgwYMVFBSkkJAQDRs2TL/88ktVvx0AAAAA1Yhbh605c+bolVde0UsvvaSDBw9qzpw5mjt3rl588UVbn7lz52rhwoVavHix9uzZo9q1ays+Pl7nz5+39Rk8eLAyMjK0ZcsWbdiwQTt27FBCQoIr3hIAAACAasJiXHqYyM3ceuutCgsL02uvvWbbdscddyggIEBvvvmmDMNQZGSkxo8frwkTJkiS8vLyFBYWphUrVmjQoEE6ePCgoqOjlZaWps6dO0uSEhMT1bdvX/3000+KjIz80zry8/MVHBysvLw8BQUFVcp7a/b4xkp5HjP88Ew/V5cAAAAAuCVHsoFbH9nq3r27kpOT9c0330iSvvzyS3366ae65ZZbJEmZmZnKyspSXFyc7XuCg4PVtWtXpaSkSJJSUlIUEhJiC1qSFBcXJx8fH+3Zs6fM171w4YLy8/PtvgAAAADAETVcXcAfefzxx5Wfn6/WrVvL19dXJSUleuqppzR48GBJUlZWliQpLCzM7vvCwsJsbVlZWQoNDbVrr1GjhurXr2/r83uzZ8/WjBkzKvvtAAAAAKhG3PrI1jvvvKNVq1Zp9erV+uKLL7Ry5UrNmzdPK1euNPV1J0+erLy8PNvXsWPHTH09AAAAAN7HrY9sPfbYY3r88cc1aNAgSVK7du30448/avbs2RoyZIjCw8MlSdnZ2YqIiLB9X3Z2tq699lpJUnh4uE6ePGn3vMXFxcrNzbV9/+/5+fnJz8/PhHcEAAAAoLpw6yNbBQUF8vGxL9HX11dWq1WS1Lx5c4WHhys5OdnWnp+frz179igmJkaSFBMTozNnzig9Pd3WZ+vWrbJareratWsVvAsAAAAA1ZFbH9m67bbb9NRTT6lJkya65pprtHfvXj333HO6//77JUkWi0VjxozRk08+qRYtWqh58+aaMmWKIiMjNWDAAElSmzZt1KdPHz344INavHixioqKNHLkSA0aNKhCKxECAAAAgDPcOmy9+OKLmjJlih555BGdPHlSkZGReuihhzR16lRbn4kTJ+rcuXNKSEjQmTNndOONNyoxMVH+/v62PqtWrdLIkSPVq1cv+fj46I477tDChQtd8ZYAAAAAVBNufZ8td8F9tgAAAABIXnSfLQAAAADwVIQtAAAAADABYQsAAAAATEDYAgAAAAATELYAAAAAwASELQAAAAAwAWELAAAAAExA2AIAAAAAExC2AAAAAMAEhC0AAAAAMAFhCwAAAABMQNgCAAAAABMQtgAAAADABIQtAAAAADABYQsAAAAATEDYAgAAAAATELYAAAAAwASELQAAAAAwAWELAAAAAExA2AIAAAAAExC2AAAAAMAEhC0AAAAAMAFhCwAAAABMQNgCAAAAABMQtgAAAADABIQtAAAAADABYQsAAAAATEDYAgAAAAATELYAAAAAwASELQAAAAAwAWELAAAAAExA2AIAAAAAExC2AAAAAMAEhC0AAAAAMAFhCwAAAABMQNgCAAAAABMQtgAAAADABIQtAAAAADABYQsAAAAATEDYAgAAAAATELYAAAAAwASELQAAAAAwAWELAAAAAExA2AIAAAAAExC2AAAAAMAEhC0AAAAAMAFhCwAAAABMQNgCAAAAABMQtgAAAADABIQtAAAAADABYQsAAAAATEDYAgAAAAATELYAAAAAwASELQAAAAAwAWELAAAAAExA2AIAAAAAExC2AAAAAMAENVxdAFBRzR7f6OoSyvXDM/1cXQIAAADcDEe2AAAAAMAEhC0AAAAAMAFhCwAAAABMQNgCAAAAABMQtgAAAADABIQtAAAAADABYQsAAAAATEDYAgAAAAATELYAAAAAwASELQAAAAAwAWELAAAAAExA2AIAAAAAExC2AAAAAMAEhC0AAAAAMAFhCwAAAABMQNgCAAAAABMQtgAAAADABIQtAAAAADABYQsAAAAATEDYAgAAAAATELYAAAAAwASELQAAAAAwAWELAAAAAEzg9mHr+PHjuueee9SgQQMFBASoXbt2+vzzz23thmFo6tSpioiIUEBAgOLi4vTtt9/aPUdubq4GDx6soKAghYSEaNiwYfrll1+q+q0AAAAAqEbcOmydPn1aN9xwg2rWrKlNmzbp66+/1vz581WvXj1bn7lz52rhwoVavHix9uzZo9q1ays+Pl7nz5+39Rk8eLAyMjK0ZcsWbdiwQTt27FBCQoIr3hIAAACAaqKGqwv4I3PmzFHjxo31+uuv27Y1b97c9m/DMPT888/riSeeUP/+/SVJb7zxhsLCwvTBBx9o0KBBOnjwoBITE5WWlqbOnTtLkl588UX17dtX8+bNU2RkZNW+KQAAAADVglsf2Vq3bp06d+6sO++8U6GhoerYsaOWLVtma8/MzFRWVpbi4uJs24KDg9W1a1elpKRIklJSUhQSEmILWpIUFxcnHx8f7dmzp+reDAAAAIBqxa3D1pEjR/TKK6+oRYsWSkpK0vDhw/Xoo49q5cqVkqSsrCxJUlhYmN33hYWF2dqysrIUGhpq116jRg3Vr1/f1uf3Lly4oPz8fLsvAAAAAHCEW59GaLVa1blzZz399NOSpI4dO+qrr77S4sWLNWTIENNed/bs2ZoxY4Zpzw8AAADA+7n1ka2IiAhFR0fbbWvTpo2OHj0qSQoPD5ckZWdn2/XJzs62tYWHh+vkyZN27cXFxcrNzbX1+b3JkycrLy/P9nXs2LFKeT8AAAAAqg+3Dls33HCDDh8+bLftm2++UdOmTSX9tlhGeHi4kpOTbe35+fnas2ePYmJiJEkxMTE6c+aM0tPTbX22bt0qq9Wqrl27lvm6fn5+CgoKsvsCAAAAAEe49WmEY8eOVffu3fX0009r4MCBSk1N1dKlS7V06VJJksVi0ZgxY/Tkk0+qRYsWat68uaZMmaLIyEgNGDBA0m9Hwvr06aMHH3xQixcvVlFRkUaOHKlBgwaxEiEAAAAA07h12Lr++uv1/vvva/LkyZo5c6aaN2+u559/XoMHD7b1mThxos6dO6eEhASdOXNGN954oxITE+Xv72/rs2rVKo0cOVK9evWSj4+P7rjjDi1cuNAVbwkAAABANWExDMNwdRHuLj8/X8HBwcrLy6u0UwqbPb6xUp7HDD8808/VJZSJMQMAAICrOZIN3PqaLQAAAADwVIQtAAAAADCBW1+zBeDycfolAACAa3BkCwAAAABMQNgCAAAAABMQtgAAAADABIQtAAAAADABYQsAAAAATEDYAgAAAAATELYAAAAAwASELQAAAAAwAWELAAAAAExA2AIAAAAAExC2AAAAAMAEhC0AAAAAMAFhCwAAAABMQNgCAAAAABMQtgAAAADABIQtAAAAADABYQsAAAAATEDYAgAAAAATOBW2oqKi9N///rfU9jNnzigqKuqyiwIAAAAAT+dU2Prhhx9UUlJSavuFCxd0/Pjxyy4KAAAAADxdDUc6r1u3zvbvpKQkBQcH2x6XlJQoOTlZzZo1q7TiAAAAAMBTORS2BgwYIEmyWCwaMmSIXVvNmjXVrFkzzZ8/v9KKAwAAAABP5VDYslqtkqTmzZsrLS1NDRs2NKUoAAAAAPB0DoWtizIzMyu7DgAAAADwKk6FLUlKTk5WcnKyTp48aTviddHy5csvuzAAAAAA8GROha0ZM2Zo5syZ6ty5syIiImSxWCq7LgAAAADwaE6FrcWLF2vFihW69957K7seAAAAAPAKTt1nq7CwUN27d6/sWgAAAADAazgVth544AGtXr26smsBAAAAAK/h1GmE58+f19KlS/Xxxx+rffv2qlmzpl37c889VynFAQAAAICncips7d+/X9dee60k6auvvrJrY7EMAAAAAHAybG3btq2y6wAAAAAAr+LUNVsAAAAAgD/m1JGtm2+++Q9PF9y6davTBQEAAACAN3AqbF28XuuioqIi7du3T1999ZWGDBlSGXUBAAAAgEdzKmwtWLCgzO3Tp0/XL7/8clkFAQAAAIA3qNRrtu655x4tX768Mp8SAAAAADxSpYatlJQU+fv7V+ZTAgAAAIBHcuo0wr///e92jw3D0M8//6zPP/9cU6ZMqZTCAAAAAMCTORW2goOD7R77+PioVatWmjlzpnr37l0phQEAAACAJ3MqbL3++uuVXQcAAAAAeBWnwtZF6enpOnjwoCTpmmuuUceOHSulKAAAAADwdE6FrZMnT2rQoEHavn27QkJCJElnzpzRzTffrLfffluNGjWqzBoBAAAAwOM4tRrhqFGjdPbsWWVkZCg3N1e5ubn66quvlJ+fr0cffbSyawQAAAAAj+PUka3ExER9/PHHatOmjW1bdHS0Fi1axAIZAAAAACAnj2xZrVbVrFmz1PaaNWvKarVedlEAAAAA4OmcCls9e/bU6NGjdeLECdu248ePa+zYserVq1elFQcAAAAAnsqpsPXSSy8pPz9fzZo101VXXaWrrrpKzZs3V35+vl588cXKrhEAAAAAPI5T12w1btxYX3zxhT7++GMdOnRIktSmTRvFxcVVanEAAAAA4KkcOrK1detWRUdHKz8/XxaLRX/96181atQojRo1Stdff72uueYa7dy506xaAQAAAMBjOBS2nn/+eT344IMKCgoq1RYcHKyHHnpIzz33XKUVBwAAAACeyqGw9eWXX6pPnz7ltvfu3Vvp6emXXRQAAAAAeDqHwlZ2dnaZS75fVKNGDZ06deqyiwIAAAAAT+dQ2Lriiiv01Vdfldu+f/9+RUREXHZRAAAAAODpHApbffv21ZQpU3T+/PlSbb/++qumTZumW2+9tdKKAwAAAABP5dDS70888YTee+89tWzZUiNHjlSrVq0kSYcOHdKiRYtUUlKi//znP6YUCgAAAACexKGwFRYWpl27dmn48OGaPHmyDMOQJFksFsXHx2vRokUKCwszpVAAAAAA8CQO39S4adOm+uijj3T69Gl99913MgxDLVq0UL169cyoDwAAAAA8ksNh66J69erp+uuvr8xaAAAAAMBrOLRABgAAAACgYghbAAAAAGACwhYAAAAAmICwBQAAAAAmIGwBAAAAgAkIWwAAAABgAsIWAAAAAJiAsAUAAAAAJiBsAQAAAIAJCFsAAAAAYALCFgAAAACYgLAFAAAAACYgbAEAAACACQhbAAAAAGACwhYAAAAAmICwBQAAAAAmIGwBAAAAgAkIWwAAAABgAsIWAAAAAJiAsAUAAAAAJqjh6gIc8cwzz2jy5MkaPXq0nn/+eUnS+fPnNX78eL399tu6cOGC4uPj9fLLLyssLMz2fUePHtXw4cO1bds21alTR0OGDNHs2bNVo4ZHvX0AVaTZ4xtdXUK5fnimn6tLAAAAFeQxR7bS0tK0ZMkStW/f3m772LFjtX79er377rv65JNPdOLECf3973+3tZeUlKhfv34qLCzUrl27tHLlSq1YsUJTp06t6rcAAAAAoBrxiLD1yy+/aPDgwVq2bJnq1atn256Xl6fXXntNzz33nHr27KlOnTrp9ddf165du7R7925J0ubNm/X111/rzTff1LXXXqtbbrlFs2bN0qJFi1RYWOiqtwQAAADAy3lE2BoxYoT69eunuLg4u+3p6ekqKiqy2966dWs1adJEKSkpkqSUlBS1a9fO7rTC+Ph45efnKyMjo8zXu3DhgvLz8+2+AAAAAMARbn/R0ttvv60vvvhCaWlppdqysrJUq1YthYSE2G0PCwtTVlaWrc+lQeti+8W2ssyePVszZsyohOoBAAAAVFdufWTr2LFjGj16tFatWiV/f/8qe93JkycrLy/P9nXs2LEqe20AAAAA3sGtw1Z6erpOnjyp6667TjVq1FCNGjX0ySefaOHChapRo4bCwsJUWFioM2fO2H1fdna2wsPDJUnh4eHKzs4u1X6xrSx+fn4KCgqy+wIAAAAAR7h12OrVq5cOHDigffv22b46d+6swYMH2/5ds2ZNJScn277n8OHDOnr0qGJiYiRJMTExOnDggE6ePGnrs2XLFgUFBSk6OrrK3xMAAACA6sGtr9mqW7eu2rZta7etdu3aatCggW37sGHDNG7cONWvX19BQUEaNWqUYmJi1K1bN0lS7969FR0drXvvvVdz585VVlaWnnjiCY0YMUJ+fn5V/p4AAAAAVA9uHbYqYsGCBfLx8dEdd9xhd1Pji3x9fbVhwwYNHz5cMTExql27toYMGaKZM2e6sGoAAAAA3s7jwtb27dvtHvv7+2vRokVatGhRud/TtGlTffTRRyZXBgAAAAD/x62v2QIAAAAAT0XYAgAAAAATELYAAAAAwASELQAAAAAwAWELAAAAAExA2AIAAAAAExC2AAAAAMAEhC0AAAAAMAFhCwAAAABMQNgCAAAAABMQtgAAAADABIQtAAAAADABYQsAAAAATEDYAgAAAAATELYAAAAAwAQ1XF0AAMA7NHt8o6tLKNcPz/RzdQllYswAwLtxZAsAAAAATEDYAgAAAAATELYAAAAAwASELQAAAAAwAWELAAAAAExA2AIAAAAAExC2AAAAAMAE3GcLAAB4FO5PBsBTcGQLAAAAAExA2AIAAAAAExC2AAAAAMAEhC0AAAAAMAFhCwAAAABMQNgCAAAAABMQtgAAAADABNxnCwAAwMtxbzLANTiyBQAAAAAmIGwBAAAAgAkIWwAAAABgAsIWAAAAAJiAsAUAAAAAJiBsAQAAAIAJCFsAAAAAYALCFgAAAACYgLAFAAAAACYgbAEAAACACQhbAAAAAGACwhYAAAAAmICwBQAAAAAmIGwBAAAAgAkIWwAAAABgAsIWAAAAAJiAsAUAAAAAJiBsAQAAAIAJCFsAAAAAYALCFgAAAACYgLAFAAAAACao4eoCAAAAAHfU7PGNri6hXD8808/VJaACCFsAAAAAKgUB1R6nEQIAAACACQhbAAAAAGACwhYAAAAAmICwBQAAAAAmIGwBAAAAgAkIWwAAAABgAsIWAAAAAJiAsAUAAAAAJiBsAQAAAIAJCFsAAAAAYALCFgAAAACYgLAFAAAAACYgbAEAAACACQhbAAAAAGACwhYAAAAAmICwBQAAAAAmIGwBAAAAgAkIWwAAAABgAsIWAAAAAJiAsAUAAAAAJiBsAQAAAIAJCFsAAAAAYALCFgAAAACYgLAFAAAAACYgbAEAAACACQhbAAAAAGACtw5bs2fP1vXXX6+6desqNDRUAwYM0OHDh+36nD9/XiNGjFCDBg1Up04d3XHHHcrOzrbrc/ToUfXr10+BgYEKDQ3VY489puLi4qp8KwAAAACqGbcOW5988olGjBih3bt3a8uWLSoqKlLv3r117tw5W5+xY8dq/fr1evfdd/XJJ5/oxIkT+vvf/25rLykpUb9+/VRYWKhdu3Zp5cqVWrFihaZOneqKtwQAAACgmqjh6gL+SGJiot3jFStWKDQ0VOnp6erRo4fy8vL02muvafXq1erZs6ck6fXXX1ebNm20e/dudevWTZs3b9bXX3+tjz/+WGFhYbr22ms1a9YsTZo0SdOnT1etWrVc8dYAAAAAeDm3PrL1e3l5eZKk+vXrS5LS09NVVFSkuLg4W5/WrVurSZMmSklJkSSlpKSoXbt2CgsLs/WJj49Xfn6+MjIyynydCxcuKD8/3+4LAAAAABzhMWHLarVqzJgxuuGGG9S2bVtJUlZWlmrVqqWQkBC7vmFhYcrKyrL1uTRoXWy/2FaW2bNnKzg42PbVuHHjSn43AAAAALydx4StESNG6KuvvtLbb79t+mtNnjxZeXl5tq9jx46Z/poAAAAAvItbX7N10ciRI7Vhwwbt2LFDV155pW17eHi4CgsLdebMGbujW9nZ2QoPD7f1SU1NtXu+i6sVXuzze35+fvLz86vkdwEAAACgOnHrI1uGYWjkyJF6//33tXXrVjVv3tyuvVOnTqpZs6aSk5Nt2w4fPqyjR48qJiZGkhQTE6MDBw7o5MmTtj5btmxRUFCQoqOjq+aNAAAAAKh23PrI1ogRI7R69Wp9+OGHqlu3ru0aq+DgYAUEBCg4OFjDhg3TuHHjVL9+fQUFBWnUqFGKiYlRt27dJEm9e/dWdHS07r33Xs2dO1dZWVl64oknNGLECI5eAQAAADCNW4etV155RZIUGxtrt/3111/X0KFDJUkLFiyQj4+P7rjjDl24cEHx8fF6+eWXbX19fX21YcMGDR8+XDExMapdu7aGDBmimTNnVtXbAAAAAFANuXXYMgzjT/v4+/tr0aJFWrRoUbl9mjZtqo8++qgySwMAAACAP+TW12wBAAAAgKcibAEAAACACQhbAAAAAGACwhYAAAAAmICwBQAAAAAmIGwBAAAAgAkIWwAAAABgAsIWAAAAAJiAsAUAAAAAJiBsAQAAAIAJCFsAAAAAYALCFgAAAACYgLAFAAAAACYgbAEAAACACQhbAAAAAGACwhYAAAAAmICwBQAAAAAmIGwBAAAAgAkIWwAAAABgAsIWAAAAAJiAsAUAAAAAJiBsAQAAAIAJCFsAAAAAYALCFgAAAACYgLAFAAAAACYgbAEAAACACQhbAAAAAGACwhYAAAAAmICwBQAAAAAmIGwBAAAAgAkIWwAAAABgAsIWAAAAAJiAsAUAAAAAJiBsAQAAAIAJCFsAAAAAYALCFgAAAACYgLAFAAAAACYgbAEAAACACQhbAAAAAGACwhYAAAAAmICwBQAAAAAmIGwBAAAAgAkIWwAAAABgAsIWAAAAAJiAsAUAAAAAJiBsAQAAAIAJCFsAAAAAYALCFgAAAACYgLAFAAAAACYgbAEAAACACQhbAAAAAGACwhYAAAAAmICwBQAAAAAmIGwBAAAAgAkIWwAAAABgAsIWAAAAAJiAsAUAAAAAJiBsAQAAAIAJCFsAAAAAYALCFgAAAACYgLAFAAAAACYgbAEAAACACQhbAAAAAGACwhYAAAAAmICwBQAAAAAmIGwBAAAAgAkIWwAAAABgAsIWAAAAAJiAsAUAAAAAJiBsAQAAAIAJCFsAAAAAYALCFgAAAACYgLAFAAAAACYgbAEAAACACQhbAAAAAGACwhYAAAAAmICwBQAAAAAmIGwBAAAAgAkIWwAAAABgAsIWAAAAAJiAsAUAAAAAJqhWYWvRokVq1qyZ/P391bVrV6Wmprq6JAAAAABeqtqErTVr1mjcuHGaNm2avvjiC3Xo0EHx8fE6efKkq0sDAAAA4IWqTdh67rnn9OCDD+q+++5TdHS0Fi9erMDAQC1fvtzVpQEAAADwQjVcXUBVKCwsVHp6uiZPnmzb5uPjo7i4OKWkpJTqf+HCBV24cMH2OC8vT5KUn59faTVZLxRU2nNVtsp8n5WJMXMO4+Y4xsw5jJvjGDPnMG6OY8ycw7g5rjqM2cXnMQzjT/tajIr08nAnTpzQFVdcoV27dikmJsa2feLEifrkk0+0Z88eu/7Tp0/XjBkzqrpMAAAAAB7i2LFjuvLKK/+wT7U4suWoyZMna9y4cbbHVqtVubm5atCggSwWiwsrKy0/P1+NGzfWsWPHFBQU5OpyPAbj5jjGzDmMm+MYM+cwbo5jzJzDuDmOMXOOu46bYRg6e/asIiMj/7RvtQhbDRs2lK+vr7Kzs+22Z2dnKzw8vFR/Pz8/+fn52W0LCQkxs8TLFhQU5FaT0FMwbo5jzJzDuDmOMXMO4+Y4xsw5jJvjGDPnuOO4BQcHV6hftVggo1atWurUqZOSk5Nt26xWq5KTk+1OKwQAAACAylItjmxJ0rhx4zRkyBB17txZXbp00fPPP69z587pvvvuc3VpAAAAALxQtQlb//znP3Xq1ClNnTpVWVlZuvbaa5WYmKiwsDBXl3ZZ/Pz8NG3atFKnPeKPMW6OY8ycw7g5jjFzDuPmOMbMOYyb4xgz53jDuFWL1QgBAAAAoKpVi2u2AAAAAKCqEbYAAAAAwASELQAAAAAwAWELAAAAAExQbVYj9GT5+fkOf4+73fjNFRg3VBXmmuMYM8C9sY+iqnj7XGM1Qg/g4+Mji8VS4f4Wi0XffPONoqKiTKzK/TFujvv73//u8PcsXrxYoaGhJlTjOZhrjmPMnDNu3DiHv+eJJ55Q/fr1TajGMzBmzmEfdRxzzTnePtcIWx7Ax8dH//u//1uhndEwDPXt21dfffWVx0xCszBujvPx8dHAgQMVEBBQof6rV6/WwYMHq/WYScw1ZzBmzvHx8VFMTIxq1apVof6ffvqpDh8+XK3HjTFzDvuo45hrzvH2ucZphB6gadOm6tGjhxo0aFCh/lFRUapZs6bJVbk/xs05CxcurPCRqrVr15pcjWdgrjmOMXPe+++/X+F9tG7duiZX4xkYM8exjzqHueY4b59rHNkCYPPJJ5/ohhtuUI0aFfs7zKeffqrrr7/eo+/sDniSlStXatCgQRXe51avXq3+/furdu3aJlfmvhgzVBXmGspC2AIAAAAAE3AaoQfJycnR8uXLlZKSoqysLElSeHi4unfvrqFDh6pRo0YurtA9MW7OycrK0p49e+zGrGvXrgoPD3dxZe6LueY4xsx5xcXFysjIsBu36Ohojzq9pqoxZo5jH3UOc81x3jrXOLLlIdLS0hQfH6/AwEDFxcUpLCxMkpSdna3k5GQVFBQoKSlJnTt3dnGl7oVxc9y5c+f00EMP6e2335bFYrFdsJqbmyvDMHTXXXdpyZIlCgwMdHGl7oW55jjGzDlWq1VTp07VokWLlJeXZ9cWHByskSNHasaMGfLx4VaaFzFmzmEfdRxzzTlePdcMeISuXbsaCQkJhtVqLdVmtVqNhIQEo1u3bi6ozL0xbo4bNmyY0aJFCyMxMdEoLi62bS8uLjaSkpKMli1bGg888IALK3RPzDXHMWbOeeyxx4xGjRoZixcvNjIzM42CggKjoKDAyMzMNJYsWWKEhoYaEydOdHWZboUxcw77qOOYa87x5rlG2PIQ/v7+xsGDB8ttP3jwoOHv71+FFXkGxs1xISEhxmeffVZu+6effmqEhIRUYUWegbnmOMbMOWFhYUZiYmK57YmJiUZoaGgVVuT+GDPnsI86jrnmHG+eaxzD9BDh4eFKTU0ttz01NdV2yBX/h3FznNVq/cN7hNSqVUtWq7UKK/IMzDXHMWbOOXv2rCIjI8ttj4iI0Llz56qwIvfHmDmHfdRxzDXnePNcY4EMDzFhwgQlJCQoPT1dvXr1KnUu67JlyzRv3jwXV+l+GDfH3XrrrUpISNBrr72mjh072rXt3btXw4cP12233eai6twXc81xjJlzYmNjNWHCBK1atUoNGza0a8vJydGkSZMUGxvrmuLcFGPmHPZRxzHXnOPVc83Vh9ZQcW+//bbRtWtXo0aNGobFYjEsFotRo0YNo2vXrsaaNWtcXZ7bYtwck5uba/Tp08ewWCxG/fr1jdatWxutW7c26tevb/j4+Bi33HKLcfr0aVeX6ZaYa45jzBx39OhRo23btkaNGjWMjh07Gn369DH69OljdOzY0ahRo4bRvn174+jRo64u060wZs5jH3UMc8153jrXWI3QAxUVFSknJ0eS1LBhQ5YRrSDGzTGHDh0qtfxqTEyMWrdu7eLK3B9zzXGMmWOsVquSkpK0e/fuUvto7969WemsDIzZ5WEfrTjm2uXxtrlG2AIAAAAAExCtAQAAAMAEhC0AAAAAMAFhCwAAAABMQNgCAAAAABMQtrzIjh07lJeX5+oyPA7jhqrCXHMcYwa4N/ZRVBVPnWuELS8SGxurqKgozZ8/39WleBTGzXHNmzfXsGHDdOLECVeX4lGYa45jzJzTs2dPzZo1SwUFBa4uxWMwZs5hH3Ucc805njrXCFteJDMzU2vXrlV2drarS/EojJvjhgwZopKSEt1www2uLsWjMNccx5g5p0mTJkpOTua+eA5gzJzDPuo45ppzPHWucZ8tAAC8VH5+voKCglxdhkdhzFBVmGvVA2HLwxUVFXn8nbWrQnFxsTIyMuzu5B4dHc3YodIx1y5fdna2Lly4oCZNmri6FADi5xqqjjfOtRquLgAV884772jAgAGqVauWJOmll17Ss88+q59++kn16tXTo48+qqlTp7q4SvdjtVo1depULVq0qNRFlcHBwRo5cqRmzJghHx/OqL3U119/rZdeekkpKSl2P/BiYmI0cuRIRUdHu7hC98Ncc9zZs2c1fPhw7dy5U7GxsVq2bJnGjh2rV155RRaLRTfeeKPWr1/PX37LkJOTo+XLl5faR7t3766hQ4eqUaNGLq7Q/TBmjuPnmnOYa47z5rnGkS0P4evrq59//lmhoaF6/fXX9cgjj2jixInq2rWr9u7dq9mzZ+v555/XAw884OpS3crEiRO1YsUKzZo1S/Hx8QoLC5P021/ON2/erClTpmjo0KGaM2eOiyt1H5s2bdKAAQN03XXXlRqzLVu2KD09XR9++KHi4+NdXKl7Ya45btSoUfr444/1yCOP6L333lNwcLC+//57LV68WCUlJRo+fLgGDBigp556ytWlupW0tDTFx8crMDBQcXFxdnMtOTlZBQUFSkpKUufOnV1cqftgzJzDzzXHMdec49VzzYBHsFgsRnZ2tmEYhtGlSxdj7ty5du0vv/yy0bFjR1eU5tbCwsKMxMTEctsTExON0NDQKqzI/bVv396YMmVKue3Tpk0z2rVrV4UVeQbmmuMaN25sbN261TAMwzh+/LhhsViM9evX29o3bNhgtGrVylXlua2uXbsaCQkJhtVqLdVmtVqNhIQEo1u3bi6ozH0xZs7h55rjmGvO8ea55nnH4qoxi8UiSTpy5Ih69+5t19a7d2999913rijLrZ09e1aRkZHltkdEROjcuXNVWJH7++abbzR48OBy2++66y59++23VViRZ2CuOe7kyZO6+uqrJUmRkZEKCAhQy5Ytbe1t27bVsWPHXFWe2/ryyy81duxY2++ES1ksFo0dO1b79u2r+sLcGGPmHH6uOY655hxvnmuELQ+SmJiodevWyd/fv9S9Gc6fP1/mjl3dxcbGasKECcrJySnVlpOTo0mTJik2NrbqC3NjzZo108aNG8tt37hxo5o2bVqFFXkG5prjGjRooFOnTtke9+/fXyEhIbbHv/zyi/z8/FxQmXsLDw9Xampque2pqam2U3DwG8bMOfxccxxzzTnePNdYIMODDBkyxPbvrVu3KiYmxvZ49+7duuqqq1xRlltbvHix+vbtq4iICLVr187uHOADBw4oOjpaGzZscHGV7mXmzJm6++67tX379jLPN09MTNTq1atdXKX7Ya45rn379kpLS9N1110nSaXmVVpamtq0aeOK0tzahAkTlJCQoPT0dPXq1avUPrps2TLNmzfPxVW6F8bMOfxccxxzzTnePNdYIMNLbNiwQTVr1mTRgjJYrVYlJSVp9+7dpVbW6927t0eubGO2Xbt2aeHChWWuRjh69Gi7oI//w1xzTG5urnx8fOyOZl1q06ZNCggI8Ni/ZpppzZo1WrBggdLT01VSUiLpt4WUOnXqpHHjxmngwIEurtD9MGbO4eea45hrzvHWuUbYAgDAQxUVFdlOu2nYsKFH34umqjBmqCrMNUiELY+wf/9+tW3btsKJPiMjQ61atVKNGpwlClQF9lEAAFAWwpYH8PX1VVZWVoVvghcUFKR9+/YpKirK5MoASOyjAACgbPxZ1QMYhqEpU6YoMDCwQv0LCwtNrgjApdhHAQBAWQhbHqBHjx46fPhwhfvHxMQoICDAxIoAXIp9FAAAlIXTCAEAAADABJ65hiJQiXr27KlZs2aVulE0yvfGG2/o+++/d3UZqAbYP52zY8cO5eXluboMj8KYOYd91HHMNed46lwjbKHaa9KkiZKTk9W6dWtXl+Ixhg4dqujoaI0aNcrVpcDLsX86JzY2VlFRUZo/f76rS/EYjJlz2Ecdx1xzjqfONa7ZQrW3YsUKSVJ+fr5rC/EgVqtVmZmZ2rRpk6tLgZdj/3ROZmamjhw5wj7qAMbMOeyjjmOuOcdT5xrXbAEAAACACTiyBa+Xk5Oj5cuXKyUlRVlZWZKk8PBwde/eXUOHDq3wvZGqs6KiIv3www8KDQ1VcHCwq8uBF2H/dF5xcbEyMjLsxi06Olo1a9Z0cWXuizFzHPuoc5hrjvPWucaRLXi1tLQ0xcfHKzAwUHFxcQoLC5MkZWdnKzk5WQUFBUpKSlLnzp1dXKn7mDt3rkaNGqWAgACVlJRo0qRJevHFF1VcXCwfHx/de++9WrJkCb8wcNnYP51jtVo1depULVq0qNRF9sHBwRo5cqRmzJghHx8uy76IMXMO+6jjmGvO8eq5ZgBerGvXrkZCQoJhtVpLtVmtViMhIcHo1q2bCypzXz4+PkZ2drZhGIbx7LPPGvXq1TOWL19uZGRkGG+++aYRGhpqzJkzx8VVwhuwfzrnscceMxo1amQsXrzYyMzMNAoKCoyCggIjMzPTWLJkiREaGmpMnDjR1WW6FcbMOeyjjmOuOceb5xphC17N39/fOHjwYLntBw8eNPz9/auwIvdnsVhsYatjx47GkiVL7NrffPNN45prrnFFafAy7J/OCQsLMxITE8ttT0xMNEJDQ6uwIvfHmDmHfdRxzDXnePNc4xgmvFp4eLhSU1PLbU9NTbUdqsb/sVgskqSjR4+qe/fudm3du3dXZmamK8qCl2H/dM7Zs2cVGRlZbntERITOnTtXhRW5P8bMOeyjjmOuOceb5xoLZMCrTZgwQQkJCUpPT1evXr1KnQO8bNkyzZs3z8VVup9ly5apTp06qlWrlnJzc+3azp49Kz8/PxdVBm/C/umc2NhYTZgwQatWrVLDhg3t2nJycjRp0iTFxsa6pjg3xZg5h33Uccw153jzXGOBDHi9NWvWaMGCBUpPT1dJSYkkydfXV506ddK4ceM0cOBAF1foXpo1a2Y7siVJo0eP1pgxY2yPX3jhBb399ttKSUlxQXXwNuyfjjt27Jj69u2rQ4cOqV27dnYfSg4cOKDo6Ght2LBBjRs3dnGl7oMxcx77qGOYa87z1rlG2EK1UVRUpJycHElSw4YNWU3PSbt375afn586duzo6lLgRdg/HWO1WpWUlKTdu3fbLZEcExOj3r17s9JZGRizy8M+WnHMtcvjbXONsAUAAAAAJiBaAwAAr7V//35ZrdYK98/IyFBxcbGJFQGoTjiyBQAAvJavr6+ysrLUqFGjCvUPCgrSvn37FBUVZXJlAKoDViMEAABeyzAMTZkyRYGBgRXqX1hYaHJFAKoTwhYAAPBaPXr00OHDhyvcPyYmRgEBASZWBKA64TRCVHs7duxQhw4dFBwc7OpSAPwO+yfg3thHUVU8da6xQAaqvdjYWEVFRWn+/PmuLsVjNG/eXMOGDdOJEydcXQq8HPunc3r27KlZs2apoKDA1aXAy7GPOo790zmeOtcIW6j2MjMztXbtWmVnZ7u6FI8xZMgQlZSU6IYbbnB1KfBy7J/OadKkiZKTk9W6dWtXlwIvxz7qOPZP53jqXOM0QgAAvFR+fr6CgoJcXQaAMrB/Vg+ELVQLxcXFysjIsLuTe3R0tMfflRzwRtnZ2bpw4YKaNGni6lIAiN+hqDreONdYjRBezWq1aurUqVq0aJHy8vLs2oKDgzVy5EjNmDFDPj6cUXupr7/+Wi+99JJSUlLsfuDFxMRo5MiRio6OdnGF8AZnz57V8OHDtXPnTsXGxmrZsmUaO3asXnnlFVksFt14441av349f/ktQ05OjpYvX15qH+3evbuGDh1a4XtKAX+E36HOYf90nDfPNY5swatNnDhRK1as0KxZsxQfH6+wsDBJv/3lfPPmzZoyZYqGDh2qOXPmuLhS97Fp0yYNGDBA1113Xakx27Jli9LT0/Xhhx8qPj7exZXC040aNUoff/yxHnnkEb333nsKDg7W999/r8WLF6ukpETDhw/XgAED9NRTT7m6VLeSlpam+Ph4BQYGKi4uzm4fTU5OVkFBgZKSktS5c2cXVwpPx+9Qx7F/Oser55oBeLGwsDAjMTGx3PbExEQjNDS0Cityf+3btzemTJlSbvu0adOMdu3aVWFF8FaNGzc2tm7dahiGYRw/ftywWCzG+vXrbe0bNmwwWrVq5ary3FbXrl2NhIQEw2q1lmqzWq1GQkKC0a1bNxdUBm/D71DHsX86x5vnmucdiwMccPbsWUVGRpbbHhERoXPnzlVhRe7vm2++0eDBg8ttv+uuu/Ttt99WYUXwVidPntTVV18tSYqMjFRAQIBatmxpa2/btq2OHTvmqvLc1pdffqmxY8fKYrGUarNYLBo7dqz27dtX9YXB6/A71HHsn87x5rlG2IJXi42N1YQJE5STk1OqLScnR5MmTVJsbGzVF+bGmjVrpo0bN5bbvnHjRjVt2rQKK4K3atCggU6dOmV73L9/f4WEhNge//LLL/Lz83NBZe4tPDxcqamp5banpqbaTsEBLge/Qx3H/ukcb55rLJABr7Z48WL17dtXERERateund05wAcOHFB0dLQ2bNjg4irdy8yZM3X33Xdr+/btZZ5vnpiYqNWrV7u4SniD9u3bKy0tTdddd50klZpXaWlpatOmjStKc2sTJkxQQkKC0tPT1atXr1L76LJlyzRv3jwXVwlvwO9Qx7F/Oseb5xoLZMDrWa1WJSUlaffu3aVW1uvdu7dHrmxjtl27dmnhwoVlrkY4evRoxcTEuLhCeIPc3Fz5+PjYHc261KZNmxQQEOCxf80005o1a7RgwQKlp6erpKREkuTr66tOnTpp3LhxGjhwoIsrhLfgd6jj2D+d461zjbAFAICHKioqsp1207BhQ4++Fw3gbdg/IXHNFgDABfbv3y+r1Vrh/hkZGSouLjaxIs9Us2ZNRUREKCIigg9yqFTso5eP/RMSR7YAAC7g6+urrKysCt/cMygoSPv27VNUVJTJlQGQ2EeBysICGQCAKmcYhqZMmaLAwMAK9S8sLDS5IgCXYh8FKgdhCwBQ5Xr06KHDhw9XuH9MTIwCAgJMrAjApdhHgcrBaYQAAAAAYAIWyEC117NnT82aNUsFBQWuLsVjvPHGG/r+++9dXQaAcuzYsUN5eXmuLgNAGdg/neOpn9cIW6j2mjRpouTkZLVu3drVpXiMoUOHKjo6WqNGjXJ1KQDKEBsbq6ioKM2fP9/VpQD4HfZP53jq5zWu2UK1t2LFCklSfn6+awvxIFarVZmZmdq0aZOrSwFQhszMTB05coR9FHBD7J/O8dTPa1yzBQAAAAAm4MgWvF5OTo6WL1+ulJQUZWVlSZLCw8PVvXt3DR06tML3EAEAd1JcXKyMjAy7n2vR0dHcPBVwA+yfjvPWz2sc2YJXS0tLU3x8vAIDAxUXF6ewsDBJUnZ2tpKTk1VQUKCkpCR17tzZxZW6j6KiIv3nP//Re++9p/r16+vhhx/W/fffb2vPzs5WZGSkSkpKXFglUH1ZrVZNnTpVixYtKnWRfXBwsEaOHKkZM2bIx4fLsoGqxv7pHG/+vEbYglfr1q2bOnTooMWLF8tisdi1GYahhx9+WPv371dKSoqLKnQ/06dP1+LFizVhwgSdOXNGL730kv75z39qyZIlkn77wRcRESGr1eriSoHqaeLEiVqxYoVmzZql+Ph4uw8lmzdv1pQpUzR06FDNmTPHxZUC1Q/7p3O8+fMaYQteLSAgQHv37i135ZpDhw6pY8eO+vXXX6u4MvfVokULLViwQLfeeqsk6bvvvtMtt9yiG2+8UcuXL9fJkyc5sgW4UHh4uFauXKn4+Pgy25OSkvSvf/1L2dnZVVwZAPZP53jz5zWOYcKrhYeHKzU1tdz21NRU21+d8Jvjx4+rbdu2tsdXX321tm/frl27dunee+8lZAEudvbsWUVGRpbbHhERoXPnzlVhRQAuYv90jjd/XmOBDHi1CRMmKCEhQenp6erVq1epc4CXLVumefPmubhK9xIeHq7vv/9ezZo1s2274oortG3bNt18880aOnSoy2oD8Ns9eiZMmKBVq1apYcOGdm05OTmaNGmSYmNjXVMcUM2xfzrHmz+vcRohvN6aNWu0YMECpaen247K+Pr6qlOnTho3bpwGDhzo4grdywMPPCDDMPTaa6+Vajt+/LhiY2N15MgRjnABLnLs2DH17dtXhw4dUrt27ew+lBw4cEDR0dHasGGDGjdu7OJKgeqH/dN53vp5jbCFaqOoqEg5OTmSpIYNG7L8ajl+/PFHHTp0qNzzzU+cOKEtW7ZoyJAhVVwZgIusVquSkpK0e/duuyWSY2Ji1Lt3b1Y6A1yI/fPyeNvnNcIWAAAAAJiAaA0AAABcpv379zt0W5SMjAwVFxebWBHcAUe2AAAAgMvk6+urrKwsNWrUqEL9g4KCtG/fPkVFRZlcGVyJ1QgBAACAy2QYhqZMmaLAwMAK9S8sLDS5IrgDwhYAAABwmXr06KHDhw9XuH9MTIwCAgJMrAjugNMIUe3t2LFDHTp0UHBwsKtLAQAAQBk89fMaC2Sg2ouNjVVUVJTmz5/v6lI8RvPmzTVs2DCdOHHC1aUAKEPPnj01a9YsFRQUuLoUAKgUnvp5jbCFai8zM1Nr165Vdna2q0vxGEOGDFFJSYluuOEGV5cCoAxNmjRRcnKyWrdu7epSAKBSeOrnNU4jBADAS+Xn5ysoKMjVZQBAtUXYQrVQXFysjIwMuzu5R0dHe/xdyQEAALyFN35eYzVCeDWr1aqpU6dq0aJFysvLs2sLDg7WyJEjNWPGDPn4cEZtRR07dkzTpk3T8uXLXV0KUG3l5ORo+fLlSklJsftQ0r17dw0dOrTC9/kBAHfgzZ/XPK9iwAGPP/64li5dqmeeeUZHjhzRuXPndO7cOR05ckRz5szR0qVLNXnyZFeX6VFyc3O1cuVKV5cBVFtpaWlq2bKlFi5cqODgYPXo0UM9evRQcHCwFi5cqNatW+vzzz93dZkAUGHe/HmN0wjh1cLDw7Vy5UrFx8eX2Z6UlKR//etfHnexpZnWrVv3h+1HjhzR+PHjVVJSUkUVAbhUt27d1KFDBy1evFgWi8WuzTAMPfzww9q/f79SUlJcVCEAOMabP69xGiG82tmzZxUZGVlue0REhM6dO1eFFbm/AQMGyGKx6I/+DvP7D3gAqs6XX36pFStWlLkfWiwWjR07Vh07dnRBZQDgHG/+vMZphPBqsbGxmjBhgnJyckq15eTkaNKkSYqNja36wtxYRESE3nvvPVmt1jK/vvjiC1eXCFRr4eHhSk1NLbc9NTVVYWFhVVgRAFweb/68xpEteLXFixerb9++ioiIULt27WwfQLKzs3XgwAFFR0drw4YNLq7SvXTq1Enp6enq379/me1/dtQLgLkmTJighIQEpaenq1evXnY/15KTk7Vs2TLNmzfPxVUCQMV58+c1rtmC17NarUpKStLu3bvtVu2KiYlR7969PXJlGzPt3LlT586dU58+fcpsP3funD7//HPddNNNVVwZgIvWrFmjBQsWKD093Xb9pK+vrzp16qRx48Zp4MCBLq4QABzjrZ/XCFsAAHiooqIi22k3DRs29Oh70QCAN/LMiAgAAFSzZk1FREQoIiKCoAXAI+3fv19Wq7XC/TMyMlRcXGxiRZWLI1sAAAAAXMLX11dZWVkVvhl7UFCQ9u3bp6ioKJMrqxwskAEAAADAJQzD0JQpUxQYGFih/oWFhSZXVLkIWwAAAABcokePHjp8+HCF+8fExCggIMDEiioXpxECAAAAgAlYIAPVXs+ePTVr1iwVFBS4uhSPsWPHDuXl5bm6DADlYB8FAPdA2EK116RJEyUnJ6t169auLsVjxMbGKioqSvPnz3d1KQDKwD4KAO6Ba7ZQ7a1YsUKSlJ+f79pCPEhmZqaOHDmiTZs2uboUAGVgHwUA98A1WwAAAABgAo5swevl5ORo+fLlSklJUVZWliQpPDxc3bt319ChQyt8X4fqpri4WBkZGXZjFh0dzY1TATfBPgoA7o8jW/BqaWlpio+PV2BgoOLi4hQWFiZJys7OVnJysgoKCpSUlKTOnTu7uFL3YbVaNXXqVC1atKjUBfbBwcEaOXKkZsyYIR8fLvkEXIF9FAA8B0e24NVGjRqlO++8U4sXL5bFYrFrMwxDDz/8sEaNGqWUlBQXVeh+Hn/8ca1YsULPPPOM4uPj7QLq5s2bNWXKFBUWFmrOnDkurhSonthHAcBzcGQLXi0gIEB79+4td6XBQ4cOqWPHjvr111+ruDL3FR4erpUrVyo+Pr7M9qSkJP3rX/9SdnZ2FVcGQGIfBQBPwjkG8Grh4eFKTU0ttz01NdX2V2H85uzZs4qMjCy3PSIiQufOnavCigBcin0UADwHR7bg1RYtWqTx48froYceUq9evUpds7Vs2TLNmzdPjzzyiIsrdR/9+vVTcXGxVq1apYYNG9q15eTk6N5775Wvr682bNjgogqB6o19FAA8B2ELXm/NmjVasGCB0tPTVVJSIkny9fVVp06dNG7cOA0cONDFFbqXY8eOqW/fvjp06JDatWtnF1APHDig6OhobdiwQY0bN3ZxpUD1xD4KAJ6DsIVqo6ioSDk5OZKkhg0bsjzyH7BarUpKStLu3bvtlpWOiYlR7969WeUMcDH2UQDwDIQtAAAAADABf/oCYLN//35ZrdYK98/IyFBxcbGJFQEAAHgujmwBsPH19VVWVpYaNWpUof5BQUHat2+foqKiTK4MAADA83BTYwA2hmFoypQpCgwMrFD/wsJCkysCAADwXIQtADY9evTQ4cOHK9w/JiZGAQEBJlYEAADguTiNENXejh071KFDBwUHB7u6FAAAAHgRFshAtRcbG6uoqCjNnz/f1aUAQKXo2bOnZs2apYKCAleXAgDVGmEL1V5mZqbWrl2r7OxsV5cCAJWiSZMmSk5OVuvWrV1dCgBUa5xGCACAl8rPz1dQUJCrywCAaouwhWopOztbFy5cUJMmTVxdCgBUCsMwZLFYXF0GAOASnEYIr3b27Fndc889atq0qYYMGaLCwkKNGDFCERERat68uW666Sbl5+e7ukwAuGx+fn46ePCgq8sAAFyCpd/h1f79738rPT1dEyZM0HvvvaeBAwfq+++/186dO1VSUqLhw4drzpw5euqpp1xdKgBUyLhx48rcXlJSomeeeUYNGjSQJD333HNVWRYAoAycRgiv1qRJE61cuVI333yzTpw4oSuvvFLr1q3TrbfeKknauHGjxo8fr0OHDrm4UgCoGB8fH3Xo0EEhISF22z/55BN17txZtWvXlsVi0datW11TIADAhrAFr+bv769vv/1WjRs3liTVrl1be/fuVcuWLSVJP/74o6Kjo3Xu3DlXlgkAFfbMM89o6dKlevXVV9WzZ0/b9po1a+rLL79UdHS0C6sDAFyKa7bg1Ro0aKBTp07ZHvfv39/ur8G//PKL/Pz8XFAZADjn8ccf15o1azR8+HBNmDBBRUVFri4JAFAOwha8Wvv27ZWWlmZ7vHr1aoWGhtoep6WlqU2bNq4oDQCcdv311ys9PV2nTp1S586d9dVXX7ESIQC4IU4jhFfLzc2Vj49PqWsbLtq0aZMCAgIUGxtbpXUBQGV5++23NWbMGJ06dUoHDhzgNEIAcCOELQAAPNxPP/2k9PR0xcXFqXbt2q4uBwDw/xG24LX279+vtm3bysenYmfLZmRkqFWrVqpRgzsiAAAA4PIRtuC1fH19lZWVpUaNGlWof1BQkPbt26eoqCiTKwMAAEB1wJ/w4bUMw9CUKVMUGBhYof6FhYUmVwQAAIDqhLAFr9WjRw8dPny4wv1jYmIUEBBgYkUAAACoTjiNEAAAAABMwH22AADwMjt27FBeXp6rywCAao+wBQCAl4mNjVVUVJTmz5/v6lIAoFojbAEA4GUyMzO1du1aZWdnu7oUAKjWuGYLAAAAAEzAkS0AALxAdna2jh496uoyAACXIGwBAOBBzp49q3vuuUdNmzbVkCFDVFhYqBEjRigiIkLNmzfXTTfdpPz8fFeXCQAQYQsAAI/y73//W+np6ZowYYKOHj2qgQMHaseOHdq5c6e2bdumnJwczZkzx9VlAgDENVsAAHiUJk2aaOXKlbr55pt14sQJXXnllVq3bp1uvfVWSdLGjRs1fvx4HTp0yMWVAgA4sgUAgAc5efKkrr76aklSZGSkAgIC1LJlS1t727ZtdezYMVeVBwC4BGELAAAP0qBBA506dcr2uH///goJCbE9/uWXX+Tn5+eCygAAv0fYAgDAg7Rv315paWm2x6tXr1ZoaKjtcVpamtq0aeOK0gAAv8M1WwAAeJDc3Fz5+PjYHc261KZNmxQQEKDY2NgqrQsAUBphCwAAAABMwGmEAAB4iP3798tqtVa4f0ZGhoqLi02sCADwRziyBQCAh/D19VVWVpYaNWpUof5BQUHat2+foqKiTK4MAFCWGq4uAAAAVIxhGJoyZYoCAwMr1L+wsNDkigAAf4SwBQCAh+jRo4cOHz5c4f4xMTEKCAgwsSIAwB/hNEIAAAAAMAELZAAAAACACQhbAAAAAGACwhYAAAAAmICwBQAAAAAmIGwBAAAAgAkIWwAAjzZ06FBZLBY988wzdts/+OADWSwW2+Pt27fLYrGU+ZWVlSVJmj59um2br6+vGjdurISEBOXm5pb7+s2aNSv3eS0Wi4YOHWrK+wYAuD/uswUA8Hj+/v6aM2eOHnroIdWrV+8P+x4+fFhBQUF220JDQ23/vuaaa/Txxx+rpKREBw8e1P3336+8vDytWbOmzOdLS0tTSUmJJGnXrl2644477F6D+1wBQPXFkS0AgMeLi4tTeHi4Zs+e/ad9Q0NDFR4ebvfl4/N/vw5r1Kih8PBwXXHFFYqLi9Odd96pLVu2lPt8jRo1sj1P/fr17V6jZs2aevjhh3XFFVcoMDBQ7dq101tvvWX3/WfPntXgwYNVu3ZtRUREaMGCBYqNjdWYMWOcGwwAgNsgbAEAPJ6vr6+efvppvfjii/rpp58q7Xl/+OEHJSUlqVatWk59//nz59WpUydt3LhRX331lRISEnTvvfcqNTXV1mfcuHH67LPPtG7dOm3ZskU7d+7UF198UVlvAQDgQpxGCADwCrfffruuvfZaTZs2Ta+99lq5/a688kq7x02bNlVGRobt8YEDB1SnTh2VlJTo/PnzkqTnnnvOqZquuOIKTZgwwfZ41KhRSkpK0jvvvKMuXbro7NmzWrlypVavXq1evXpJkl5//XVFRkY69XoAAPdC2AIAeI05c+aoZ8+edgHn93bu3Km6devaHtesWdOuvVWrVlq3bp3Onz+vN998U/v27dOoUaOcqqekpERPP/203nnnHR0/flyFhYW6cOGCAgMDJUlHjhxRUVGRunTpYvue4OBgtWrVyqnXAwC4F04jBAB4jR49eig+Pl6TJ08ut0/z5s119dVX276aNm1q116rVi1dffXVatu2rZ555hn5+vpqxowZTtXz7LPP6oUXXtCkSZO0bds27du3T/Hx8SosLHTq+QAAnoWwBQDwKs8884zWr1+vlJSUSnm+J554QvPmzdOJEycc/t7PPvtM/fv31z333KMOHTooKipK33zzja09KipKNWvWVFpamm1bXl6eXR8AgOcibAEAvEq7du00ePBgLVy4sMz2kydPKisry+6rqKio3OeLiYlR+/bt9fTTTztcS4sWLbRlyxbt2rVLBw8e1EMPPaTs7Gxbe926dTVkyBA99thj2rZtmzIyMjRs2DD5+PjY3SMMAOCZCFsAAK8zc+ZMWa3WMttatWqliIgIu6/09PQ/fL6xY8fq1Vdf1bFjxxyq44knntB1112n+Ph4xcbGKjw8XAMGDLDr89xzzykmJka33nqr4uLidMMNN6hNmzby9/d36LUAAO7HYhiG4eoiAADAb86dO6crrrhC8+fP17Bhw1xdDgDgMrAaIQAALrR3714dOnRIXbp0UV5enmbOnClJ6t+/v4srAwBcLsIWAAAuNm/ePB0+fFi1atVSp06dtHPnTjVs2NDVZQEALhOnEQIAAACACVggAwAAAABMQNgCAAAAABMQtgAAAADABIQtAAAAADABYQsAAAAATEDYAgAAAAATELYAAAAAwASELQAAAAAwAWELAAAAAEzw/wCDuNlgk2CGfgAAAABJRU5ErkJggg==\n"
          },
          "metadata": {}
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "def export_to_file(export_file_path, data):\n",
        "    with open(export_file_path, \"w\") as f:\n",
        "        for record in data:\n",
        "            ner_tags = record[\"ner_tags\"]\n",
        "            tokens = record[\"tokens\"]\n",
        "            if len(tokens) > 0:\n",
        "                f.write(\n",
        "                    str(len(tokens))\n",
        "                    + \"\\t\"\n",
        "                    + \"\\t\".join(tokens)\n",
        "                    + \"\\t\"\n",
        "                    + \"\\t\".join(map(str, ner_tags))\n",
        "                    + \"\\n\"\n",
        "                )\n",
        "\n",
        "\n",
        "os.makedirs(\"data\", exist_ok=True)\n",
        "export_to_file(\"./data/conll_train.txt\", conll_data[\"train\"])\n",
        "export_to_file(\"./data/conll_val.txt\", conll_data[\"validation\"])"
      ],
      "metadata": {
        "id": "EQgmkV1fZRhI"
      },
      "execution_count": 9,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "def make_tag_lookup_table():\n",
        "    iob_labels = [\"B\", \"I\"]\n",
        "    ner_labels = [\"PER\", \"ORG\", \"LOC\", \"MISC\"]\n",
        "    all_labels = [(label1, label2) for label2 in ner_labels for label1 in iob_labels]\n",
        "    all_labels = [\"-\".join([a, b]) for a, b in all_labels]\n",
        "    all_labels = [\"[PAD]\", \"O\"] + all_labels\n",
        "    return dict(zip(range(0, len(all_labels) + 1), all_labels))\n",
        "\n",
        "\n",
        "mapping = make_tag_lookup_table()\n",
        "print(mapping)"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "OdufhIrEZRs2",
        "outputId": "09e10fc1-6fdf-4281-ac81-973d32dad3a5"
      },
      "execution_count": 10,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "{0: '[PAD]', 1: 'O', 2: 'B-PER', 3: 'I-PER', 4: 'B-ORG', 5: 'I-ORG', 6: 'B-LOC', 7: 'I-LOC', 8: 'B-MISC', 9: 'I-MISC'}\n"
          ]
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "all_tokens = sum(conll_data[\"train\"][\"tokens\"], [])\n",
        "all_tokens_array = np.array(list(map(str.lower, all_tokens)))\n",
        "\n",
        "counter = Counter(all_tokens_array)\n",
        "print(len(counter))\n",
        "\n",
        "num_tags = len(mapping)\n",
        "vocab_size = 20000\n",
        "\n",
        "# We only take (vocab_size - 2) most commons words from the training data since\n",
        "# the `StringLookup` class uses 2 additional tokens - one denoting an unknown\n",
        "# token and another one denoting a masking token\n",
        "vocabulary = [token for token, count in counter.most_common(vocab_size - 2)]\n",
        "\n",
        "# The StringLook class will convert tokens to token IDs\n",
        "lookup_layer = keras.layers.StringLookup(vocabulary=vocabulary)"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "a7T9RCZ3ZSKB",
        "outputId": "c2dae2fc-b812-4d64-b3eb-23e2d38710c3"
      },
      "execution_count": 11,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "21009\n"
          ]
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "train_data = tf.data.TextLineDataset(\"./data/conll_train.txt\")\n",
        "val_data = tf.data.TextLineDataset(\"./data/conll_val.txt\")"
      ],
      "metadata": {
        "id": "vdcDo5IJZfjl"
      },
      "execution_count": 12,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "print(list(train_data.take(1).as_numpy_iterator()))\n"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "8fXqLG3FZfmx",
        "outputId": "42354174-a397-4b9e-eda0-4b1d5ed62665"
      },
      "execution_count": 13,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "[b'9\\tEU\\trejects\\tGerman\\tcall\\tto\\tboycott\\tBritish\\tlamb\\t.\\t3\\t0\\t7\\t0\\t0\\t0\\t7\\t0\\t0']\n"
          ]
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "def map_record_to_training_data(record):\n",
        "    record = tf.strings.split(record, sep=\"\\t\")\n",
        "    length = tf.strings.to_number(record[0], out_type=tf.int32)\n",
        "    tokens = record[1 : length + 1]\n",
        "    tags = record[length + 1 :]\n",
        "    tags = tf.strings.to_number(tags, out_type=tf.int64)\n",
        "    tags += 1\n",
        "    return tokens, tags\n",
        "\n",
        "\n",
        "def lowercase_and_convert_to_ids(tokens):\n",
        "    tokens = tf.strings.lower(tokens)\n",
        "    return lookup_layer(tokens)\n",
        "\n",
        "\n",
        "# We use `padded_batch` here because each record in the dataset has a\n",
        "# different length.\n",
        "batch_size = 32\n",
        "train_dataset = (\n",
        "    train_data.map(map_record_to_training_data)\n",
        "    .map(lambda x, y: (lowercase_and_convert_to_ids(x), y))\n",
        "    .padded_batch(batch_size)\n",
        ")\n",
        "val_dataset = (\n",
        "    val_data.map(map_record_to_training_data)\n",
        "    .map(lambda x, y: (lowercase_and_convert_to_ids(x), y))\n",
        "    .padded_batch(batch_size)\n",
        ")\n",
        "\n",
        "ner_model = NERModel(num_tags, vocab_size, embed_dim=32, num_heads=4, ff_dim=64)"
      ],
      "metadata": {
        "id": "jtt-G6ezZto5"
      },
      "execution_count": 14,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "class CustomNonPaddingTokenLoss(keras.losses.Loss):\n",
        "    def __init__(self, name=\"custom_ner_loss\"):\n",
        "        super().__init__(name=name)\n",
        "\n",
        "    def call(self, y_true, y_pred):\n",
        "        loss_fn = keras.losses.SparseCategoricalCrossentropy(\n",
        "            from_logits=False, reduction= 'none'\n",
        "        )\n",
        "        loss = loss_fn(y_true, y_pred)\n",
        "        mask = tf.cast((y_true > 0), dtype=tf.float32)\n",
        "        loss = loss * mask\n",
        "        return tf.reduce_sum(loss) / tf.reduce_sum(mask)\n",
        "\n",
        "\n",
        "loss = CustomNonPaddingTokenLoss()"
      ],
      "metadata": {
        "id": "uqCmpwqgZtrs"
      },
      "execution_count": 15,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "ner_model.compile(optimizer=\"adam\", loss=loss)\n",
        "ner_model.fit(train_dataset, epochs=10)\n",
        "\n",
        "\n",
        "def tokenize_and_convert_to_ids(text):\n",
        "    tokens = text.split()\n",
        "    return lowercase_and_convert_to_ids(tokens)\n",
        "\n",
        "\n",
        "# Sample inference using the trained model\n",
        "sample_input = tokenize_and_convert_to_ids(\n",
        "    \"eu rejects german call to boycott british lamb\"\n",
        ")\n",
        "sample_input = tf.reshape(sample_input, shape=[1, -1])\n",
        "print(sample_input)\n",
        "\n",
        "output = ner_model.predict(sample_input)\n",
        "prediction = np.argmax(output, axis=-1)[0]\n",
        "prediction = [mapping[i] for i in prediction]\n",
        "\n",
        "# eu -> B-ORG, german -> B-MISC, british -> B-MISC\n",
        "print(prediction)\n"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "TQDGyN4gZtuC",
        "outputId": "5b743bb3-2112-47b2-e4f7-0db45991f93d"
      },
      "execution_count": 16,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "Epoch 1/10\n",
            "439/439 [==============================] - 20s 38ms/step - loss: 0.6150\n",
            "Epoch 2/10\n",
            "439/439 [==============================] - 17s 38ms/step - loss: 0.2667\n",
            "Epoch 3/10\n",
            "439/439 [==============================] - 14s 33ms/step - loss: 0.1617\n",
            "Epoch 4/10\n",
            "439/439 [==============================] - 15s 33ms/step - loss: 0.1254\n",
            "Epoch 5/10\n",
            "439/439 [==============================] - 14s 33ms/step - loss: 0.1015\n",
            "Epoch 6/10\n",
            "439/439 [==============================] - 14s 32ms/step - loss: 0.0837\n",
            "Epoch 7/10\n",
            "439/439 [==============================] - 15s 35ms/step - loss: 0.0697\n",
            "Epoch 8/10\n",
            "439/439 [==============================] - 14s 32ms/step - loss: 0.0604\n",
            "Epoch 9/10\n",
            "439/439 [==============================] - 15s 33ms/step - loss: 0.0526\n",
            "Epoch 10/10\n",
            "439/439 [==============================] - 16s 35ms/step - loss: 0.0456\n",
            "tf.Tensor([[  988 10950   204   628     6  3938   215  5773]], shape=(1, 8), dtype=int64)\n",
            "1/1 [==============================] - 0s 261ms/step\n",
            "['B-ORG', 'O', 'B-MISC', 'O', 'O', 'O', 'B-MISC', 'O']\n"
          ]
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "def calculate_metrics(dataset):\n",
        "    all_true_tag_ids, all_predicted_tag_ids = [], []\n",
        "\n",
        "    for x, y in dataset:\n",
        "        output = ner_model.predict(x, verbose=0)\n",
        "        predictions = np.argmax(output, axis=-1)\n",
        "        predictions = np.reshape(predictions, [-1])\n",
        "\n",
        "        true_tag_ids = np.reshape(y, [-1])\n",
        "\n",
        "        mask = (true_tag_ids > 0) & (predictions > 0)\n",
        "        true_tag_ids = true_tag_ids[mask]\n",
        "        predicted_tag_ids = predictions[mask]\n",
        "\n",
        "        all_true_tag_ids.append(true_tag_ids)\n",
        "        all_predicted_tag_ids.append(predicted_tag_ids)\n",
        "\n",
        "    all_true_tag_ids = np.concatenate(all_true_tag_ids)\n",
        "    all_predicted_tag_ids = np.concatenate(all_predicted_tag_ids)\n",
        "\n",
        "    predicted_tags = [mapping[tag] for tag in all_predicted_tag_ids]\n",
        "    real_tags = [mapping[tag] for tag in all_true_tag_ids]\n",
        "\n",
        "    evaluate(real_tags, predicted_tags)\n",
        "\n",
        "\n",
        "calculate_metrics(val_dataset)"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "vPPszQFIcEKi",
        "outputId": "22d8a103-b1d1-402b-b401-f5662fdaca00"
      },
      "execution_count": 17,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "processed 51362 tokens with 5942 phrases; found: 5194 phrases; correct: 3847.\n",
            "accuracy:  62.20%; (non-O)\n",
            "accuracy:  93.33%; precision:  74.07%; recall:  64.74%; FB1:  69.09\n",
            "              LOC: precision:  85.18%; recall:  79.48%; FB1:  82.23  1714\n",
            "             MISC: precision:  75.61%; recall:  63.88%; FB1:  69.25  779\n",
            "              ORG: precision:  63.88%; recall:  60.92%; FB1:  62.37  1279\n",
            "              PER: precision:  68.99%; recall:  53.26%; FB1:  60.11  1422\n"
          ]
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "def test_model_with_input(ner_model, mapping):\n",
        "    # Get input sentence from user\n",
        "    input_sentence = input(\"Enter a sentence: \")\n",
        "\n",
        "    # Tokenize and convert input sentence to IDs\n",
        "    sample_input = tokenize_and_convert_to_ids(input_sentence)\n",
        "    sample_input = tf.reshape(sample_input, shape=[1, -1])\n",
        "\n",
        "    # Predict tags using the trained model\n",
        "    output = ner_model.predict(sample_input)\n",
        "    predictions = np.argmax(output, axis=-1)[0]\n",
        "    predicted_tags = [mapping[i] for i in predictions]\n",
        "\n",
        "    # Print the predicted tags for each token in the input sentence\n",
        "    print(\"Input sentence:\", input_sentence)\n",
        "    print(\"Predicted tags:\", predicted_tags)\n",
        "\n",
        "# Test the model with user input\n",
        "test_model_with_input(ner_model, mapping)"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "BX6jui33cEiJ",
        "outputId": "91207f20-c00e-46ab-ae91-9bc1dfc8d804"
      },
      "execution_count": 18,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "Enter a sentence: My Name is Karishma. I live in Canada. Canada I am from India\n",
            "1/1 [==============================] - 0s 20ms/step\n",
            "Input sentence: My Name is Karishma. I live in Canada. Canada I am from India\n",
            "Predicted tags: ['O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'B-LOC', 'O', 'O', 'O', 'B-LOC']\n"
          ]
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "logger = logging.getLogger(\"presidio-analyzer\")\n",
        "\n",
        "\n",
        "class FlairRecognizer(EntityRecognizer):\n",
        "    \"\"\"\n",
        "    Wrapper for a flair model, if needed to be used within Presidio Analyzer.\n",
        "    :example:\n",
        "    >from presidio_analyzer import AnalyzerEngine, RecognizerRegistry\n",
        "    >flair_recognizer = FlairRecognizer()\n",
        "    >registry = RecognizerRegistry()\n",
        "    >registry.add_recognizer(flair_recognizer)\n",
        "    >analyzer = AnalyzerEngine(registry=registry)\n",
        "    >results = analyzer.analyze(\n",
        "    >    \"My name is Christopher and I live in Irbid.\",\n",
        "    >    language=\"en\",\n",
        "    >    return_decision_process=True,\n",
        "    >)\n",
        "    >for result in results:\n",
        "    >    print(result)\n",
        "    >    print(result.analysis_explanation)\n",
        "    \"\"\"\n",
        "\n",
        "    ENTITIES = [\n",
        "        \"LOCATION\",\n",
        "        \"PERSON\",\n",
        "        \"ORGANIZATION\",\n",
        "        # \"MISCELLANEOUS\"   # - There are no direct correlation with Presidio entities.\n",
        "    ]\n",
        "\n",
        "    DEFAULT_EXPLANATION = \"Identified as {} by Flair's Named Entity Recognition\"\n",
        "\n",
        "    CHECK_LABEL_GROUPS = [\n",
        "        ({\"LOCATION\"}, {\"LOC\", \"LOCATION\"}),\n",
        "        ({\"PERSON\"}, {\"PER\", \"PERSON\"}),\n",
        "        ({\"ORGANIZATION\"}, {\"ORG\"}),\n",
        "        # ({\"MISCELLANEOUS\"}, {\"MISC\"}), # Probably not PII\n",
        "    ]\n",
        "\n",
        "    MODEL_LANGUAGES = {\"en\": \"flair/ner-english-large\"}\n",
        "\n",
        "    PRESIDIO_EQUIVALENCES = {\n",
        "        \"PER\": \"PERSON\",\n",
        "        \"LOC\": \"LOCATION\",\n",
        "        \"ORG\": \"ORGANIZATION\",\n",
        "        # 'MISC': 'MISCELLANEOUS'   # - Probably not PII\n",
        "    }\n",
        "\n",
        "    def __init__(\n",
        "        self,\n",
        "        supported_language: str = \"en\",\n",
        "        supported_entities: Optional[List[str]] = None,\n",
        "        check_label_groups: Optional[Tuple[Set, Set]] = None,\n",
        "        model: SequenceTagger = None,\n",
        "        model_path: Optional[str] = None,\n",
        "    ):\n",
        "        self.check_label_groups = (\n",
        "            check_label_groups if check_label_groups else self.CHECK_LABEL_GROUPS\n",
        "        )\n",
        "\n",
        "        supported_entities = supported_entities if supported_entities else self.ENTITIES\n",
        "\n",
        "        if model and model_path:\n",
        "            raise ValueError(\"Only one of model or model_path should be provided.\")\n",
        "        elif model and not model_path:\n",
        "            self.model = model\n",
        "        elif not model and model_path:\n",
        "            print(f\"Loading model from {model_path}\")\n",
        "            self.model = SequenceTagger.load(model_path)\n",
        "        else:\n",
        "            print(f\"Loading model for language {supported_language}\")\n",
        "            self.model = SequenceTagger.load(\n",
        "                self.MODEL_LANGUAGES.get(supported_language)\n",
        "            )\n",
        "\n",
        "        super().__init__(\n",
        "            supported_entities=supported_entities,\n",
        "            supported_language=supported_language,\n",
        "            name=\"Flair Analytics\",\n",
        "        )\n",
        "\n",
        "    def load(self) -> None:\n",
        "        \"\"\"Load the model, not used. Model is loaded during initialization.\"\"\"\n",
        "        pass\n",
        "\n",
        "    def get_supported_entities(self) -> List[str]:\n",
        "        \"\"\"\n",
        "        Return supported entities by this model.\n",
        "        :return: List of the supported entities.\n",
        "        \"\"\"\n",
        "        return self.supported_entities\n",
        "\n",
        "    # Class to use Flair with Presidio as an external recognizer.\n",
        "    def analyze(\n",
        "        self, text: str, entities: List[str], nlp_artifacts: NlpArtifacts = None\n",
        "    ) -> List[RecognizerResult]:\n",
        "        \"\"\"\n",
        "        Analyze text using Text Analytics.\n",
        "        :param text: The text for analysis.\n",
        "        :param entities: Not working properly for this recognizer.\n",
        "        :param nlp_artifacts: Not used by this recognizer.\n",
        "        :param language: Text language. Supported languages in MODEL_LANGUAGES\n",
        "        :return: The list of Presidio RecognizerResult constructed from the recognized\n",
        "            Flair detections.\n",
        "        \"\"\"\n",
        "\n",
        "        results = []\n",
        "\n",
        "        sentences = Sentence(text)\n",
        "        self.model.predict(sentences)\n",
        "\n",
        "        # If there are no specific list of entities, we will look for all of it.\n",
        "        if not entities:\n",
        "            entities = self.supported_entities\n",
        "\n",
        "        for entity in entities:\n",
        "            if entity not in self.supported_entities:\n",
        "                continue\n",
        "\n",
        "            for ent in sentences.get_spans(\"ner\"):\n",
        "                if not self.__check_label(\n",
        "                    entity, ent.labels[0].value, self.check_label_groups\n",
        "                ):\n",
        "                    continue\n",
        "                textual_explanation = self.DEFAULT_EXPLANATION.format(\n",
        "                    ent.labels[0].value\n",
        "                )\n",
        "                explanation = self.build_flair_explanation(\n",
        "                    round(ent.score, 2), textual_explanation\n",
        "                )\n",
        "                flair_result = self._convert_to_recognizer_result(ent, explanation)\n",
        "\n",
        "                results.append(flair_result)\n",
        "\n",
        "        return results\n",
        "\n",
        "    def _convert_to_recognizer_result(self, entity, explanation) -> RecognizerResult:\n",
        "        entity_type = self.PRESIDIO_EQUIVALENCES.get(entity.tag, entity.tag)\n",
        "        flair_score = round(entity.score, 2)\n",
        "\n",
        "        flair_results = RecognizerResult(\n",
        "            entity_type=entity_type,\n",
        "            start=entity.start_position,\n",
        "            end=entity.end_position,\n",
        "            score=flair_score,\n",
        "            analysis_explanation=explanation,\n",
        "        )\n",
        "\n",
        "        return flair_results\n",
        "\n",
        "    def build_flair_explanation(\n",
        "        self, original_score: float, explanation: str\n",
        "    ) -> AnalysisExplanation:\n",
        "        \"\"\"\n",
        "        Create explanation for why this result was detected.\n",
        "        :param original_score: Score given by this recognizer\n",
        "        :param explanation: Explanation string\n",
        "        :return:\n",
        "        \"\"\"\n",
        "        explanation = AnalysisExplanation(\n",
        "            recognizer=self.__class__.__name__,\n",
        "            original_score=original_score,\n",
        "            textual_explanation=explanation,\n",
        "        )\n",
        "        return explanation\n",
        "\n",
        "    @staticmethod\n",
        "    def __check_label(\n",
        "        entity: str, label: str, check_label_groups: Tuple[Set, Set]\n",
        "    ) -> bool:\n",
        "        return any(\n",
        "            [entity in egrp and label in lgrp for egrp, lgrp in check_label_groups]\n",
        "        )"
      ],
      "metadata": {
        "id": "OWwGi143lCVF"
      },
      "execution_count": 20,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "from transformers import AutoModel, AutoTokenizer\n",
        "\n",
        "\n",
        "if __name__ == \"__main__\":\n",
        "    from flair.data import Sentence\n",
        "    from flair.models import SequenceTagger\n",
        "\n",
        "    # load tagger\n",
        "    tagger = SequenceTagger.load(\"flair/ner-english-large\")\n",
        "\n",
        "    # make example sentence\n",
        "    sentence = Sentence(\"My name is Karishma Shirsath. I live in Toronto Canada.\")\n",
        "\n",
        "    # predict NER tags\n",
        "    tagger.predict(sentence)\n",
        "\n",
        "    # print sentence\n",
        "    print(sentence)\n",
        "\n",
        "    # print predicted NER spans\n",
        "    print(\"The following NER tags are found:\")\n",
        "    # iterate over entities and print\n",
        "    for entity in sentence.get_spans(\"ner\"):\n",
        "        print(entity)\n",
        "\n"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "LT92Kk44lgAV",
        "outputId": "0fc28bdc-4a3a-4e68-8617-27cdcedbc3ce"
      },
      "execution_count": 21,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "2024-03-16 05:24:49,993 SequenceTagger predicts: Dictionary with 20 tags: <unk>, O, S-ORG, S-MISC, B-PER, E-PER, S-LOC, B-ORG, E-ORG, I-PER, S-PER, B-MISC, I-MISC, E-MISC, I-ORG, B-LOC, E-LOC, I-LOC, <START>, <STOP>\n",
            "Sentence[12]: \"My name is Karishma Shirsath. I live in Toronto Canada.\" β†’ [\"Karishma Shirsath\"/PER, \"Toronto\"/LOC, \"Canada\"/LOC]\n",
            "The following NER tags are found:\n",
            "Span[3:5]: \"Karishma Shirsath\" β†’ PER (1.0)\n",
            "Span[9:10]: \"Toronto\" β†’ LOC (1.0)\n",
            "Span[10:11]: \"Canada\" β†’ LOC (1.0)\n"
          ]
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "if __name__ == \"__main__\":\n",
        "    from flair.data import Sentence\n",
        "    from flair.models import SequenceTagger\n",
        "\n",
        "    # load tagger\n",
        "    tagger = SequenceTagger.load(\"flair/ner-english-large\")\n",
        "\n",
        "    # make example sentence\n",
        "    sentence = Sentence(\"My name is Karishma Shirsath. I live in Toronto Canada.\")\n",
        "\n",
        "    # predict NER tags\n",
        "    tagger.predict(sentence)\n",
        "\n",
        "    # print sentence\n",
        "    print(sentence)\n",
        "\n",
        "    # Anonymize identified named entities\n",
        "    anonymized_sentence = str(sentence)\n",
        "    for entity in sentence.get_spans(\"ner\"):\n",
        "        entity_text = entity.text\n",
        "        anonymized_text = \"*\" * len(entity_text)\n",
        "        anonymized_sentence = anonymized_sentence.replace(entity_text, anonymized_text)\n",
        "\n",
        "    # print anonymized sentence\n",
        "    print(\"Anonymized sentence:\")\n",
        "    print(anonymized_sentence)\n",
        "\n"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "lgYJJVilwbVF",
        "outputId": "20e52cfd-0e6e-4906-bcb0-3c403160293d"
      },
      "execution_count": 33,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "2024-03-16 05:39:00,757 SequenceTagger predicts: Dictionary with 20 tags: <unk>, O, S-ORG, S-MISC, B-PER, E-PER, S-LOC, B-ORG, E-ORG, I-PER, S-PER, B-MISC, I-MISC, E-MISC, I-ORG, B-LOC, E-LOC, I-LOC, <START>, <STOP>\n",
            "Sentence[12]: \"My name is Karishma Shirsath. I live in Toronto Canada.\" β†’ [\"Karishma Shirsath\"/PER, \"Toronto\"/LOC, \"Canada\"/LOC]\n",
            "Anonymized sentence:\n",
            "Sentence[12]: \"My name is *****************. I live in ******* ******.\" β†’ [\"*****************\"/PER, \"*******\"/LOC, \"******\"/LOC]\n"
          ]
        }
      ]
    }
  ]
}