Spaces:
Sleeping
Sleeping
File size: 114,669 Bytes
46dbc0f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 |
{
"nbformat": 4,
"nbformat_minor": 0,
"metadata": {
"colab": {
"provenance": []
},
"kernelspec": {
"name": "python3",
"display_name": "Python 3"
},
"language_info": {
"name": "python"
}
},
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "gczeIWL7Yqml",
"outputId": "353b3804-fb2b-4ead-d190-69cc7ef11ea6"
},
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Collecting datasets\n",
" Downloading datasets-2.18.0-py3-none-any.whl (510 kB)\n",
"\u001b[?25l \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m0.0/510.5 kB\u001b[0m \u001b[31m?\u001b[0m eta \u001b[36m-:--:--\u001b[0m\r\u001b[2K \u001b[91mββββ\u001b[0m\u001b[91mβΈ\u001b[0m\u001b[90mβββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m61.4/510.5 kB\u001b[0m \u001b[31m1.7 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m\r\u001b[2K \u001b[91mβββββββββββββββββββββββββββββββββββββββ\u001b[0m\u001b[90mβΊ\u001b[0m \u001b[32m501.8/510.5 kB\u001b[0m \u001b[31m7.3 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m\r\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m510.5/510.5 kB\u001b[0m \u001b[31m5.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hRequirement already satisfied: filelock in /usr/local/lib/python3.10/dist-packages (from datasets) (3.13.1)\n",
"Requirement already satisfied: numpy>=1.17 in /usr/local/lib/python3.10/dist-packages (from datasets) (1.25.2)\n",
"Requirement already satisfied: pyarrow>=12.0.0 in /usr/local/lib/python3.10/dist-packages (from datasets) (14.0.2)\n",
"Requirement already satisfied: pyarrow-hotfix in /usr/local/lib/python3.10/dist-packages (from datasets) (0.6)\n",
"Collecting dill<0.3.9,>=0.3.0 (from datasets)\n",
" Downloading dill-0.3.8-py3-none-any.whl (116 kB)\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m116.3/116.3 kB\u001b[0m \u001b[31m7.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hRequirement already satisfied: pandas in /usr/local/lib/python3.10/dist-packages (from datasets) (1.5.3)\n",
"Requirement already satisfied: requests>=2.19.0 in /usr/local/lib/python3.10/dist-packages (from datasets) (2.31.0)\n",
"Requirement already satisfied: tqdm>=4.62.1 in /usr/local/lib/python3.10/dist-packages (from datasets) (4.66.2)\n",
"Collecting xxhash (from datasets)\n",
" Downloading xxhash-3.4.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (194 kB)\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m194.1/194.1 kB\u001b[0m \u001b[31m7.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hCollecting multiprocess (from datasets)\n",
" Downloading multiprocess-0.70.16-py310-none-any.whl (134 kB)\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m134.8/134.8 kB\u001b[0m \u001b[31m4.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hRequirement already satisfied: fsspec[http]<=2024.2.0,>=2023.1.0 in /usr/local/lib/python3.10/dist-packages (from datasets) (2023.6.0)\n",
"Requirement already satisfied: aiohttp in /usr/local/lib/python3.10/dist-packages (from datasets) (3.9.3)\n",
"Requirement already satisfied: huggingface-hub>=0.19.4 in /usr/local/lib/python3.10/dist-packages (from datasets) (0.20.3)\n",
"Requirement already satisfied: packaging in /usr/local/lib/python3.10/dist-packages (from datasets) (24.0)\n",
"Requirement already satisfied: pyyaml>=5.1 in /usr/local/lib/python3.10/dist-packages (from datasets) (6.0.1)\n",
"Requirement already satisfied: aiosignal>=1.1.2 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets) (1.3.1)\n",
"Requirement already satisfied: attrs>=17.3.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets) (23.2.0)\n",
"Requirement already satisfied: frozenlist>=1.1.1 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets) (1.4.1)\n",
"Requirement already satisfied: multidict<7.0,>=4.5 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets) (6.0.5)\n",
"Requirement already satisfied: yarl<2.0,>=1.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets) (1.9.4)\n",
"Requirement already satisfied: async-timeout<5.0,>=4.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets) (4.0.3)\n",
"Requirement already satisfied: typing-extensions>=3.7.4.3 in /usr/local/lib/python3.10/dist-packages (from huggingface-hub>=0.19.4->datasets) (4.10.0)\n",
"Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.10/dist-packages (from requests>=2.19.0->datasets) (3.3.2)\n",
"Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.10/dist-packages (from requests>=2.19.0->datasets) (3.6)\n",
"Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.10/dist-packages (from requests>=2.19.0->datasets) (2.0.7)\n",
"Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.10/dist-packages (from requests>=2.19.0->datasets) (2024.2.2)\n",
"Requirement already satisfied: python-dateutil>=2.8.1 in /usr/local/lib/python3.10/dist-packages (from pandas->datasets) (2.8.2)\n",
"Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.10/dist-packages (from pandas->datasets) (2023.4)\n",
"Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.10/dist-packages (from python-dateutil>=2.8.1->pandas->datasets) (1.16.0)\n",
"Installing collected packages: xxhash, dill, multiprocess, datasets\n",
"Successfully installed datasets-2.18.0 dill-0.3.8 multiprocess-0.70.16 xxhash-3.4.1\n",
"--2024-03-16 03:52:00-- https://raw.githubusercontent.com/sighsmile/conlleval/master/conlleval.py\n",
"Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 185.199.108.133, 185.199.109.133, 185.199.110.133, ...\n",
"Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|185.199.108.133|:443... connected.\n",
"HTTP request sent, awaiting response... 200 OK\n",
"Length: 7502 (7.3K) [text/plain]\n",
"Saving to: βconlleval.pyβ\n",
"\n",
"conlleval.py 100%[===================>] 7.33K --.-KB/s in 0s \n",
"\n",
"2024-03-16 03:52:00 (96.5 MB/s) - βconlleval.pyβ saved [7502/7502]\n",
"\n"
]
}
],
"source": [
"!pip3 install datasets\n",
"!wget https://raw.githubusercontent.com/sighsmile/conlleval/master/conlleval.py\n"
]
},
{
"cell_type": "code",
"source": [
"!pip install presidio-analyzer"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "x5eLSkVqlhh6",
"outputId": "9cf46693-5e60-425d-8693-22a5df24fea0"
},
"execution_count": 36,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Collecting presidio-analyzer\n",
" Downloading presidio_analyzer-2.2.353-py3-none-any.whl (85 kB)\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m85.7/85.7 kB\u001b[0m \u001b[31m2.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hRequirement already satisfied: spacy<4.0.0,>=3.4.4 in /usr/local/lib/python3.10/dist-packages (from presidio-analyzer) (3.7.4)\n",
"Requirement already satisfied: regex in /usr/local/lib/python3.10/dist-packages (from presidio-analyzer) (2023.12.25)\n",
"Collecting tldextract (from presidio-analyzer)\n",
" Downloading tldextract-5.1.1-py3-none-any.whl (97 kB)\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m97.7/97.7 kB\u001b[0m \u001b[31m9.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hRequirement already satisfied: pyyaml in /usr/local/lib/python3.10/dist-packages (from presidio-analyzer) (6.0.1)\n",
"Collecting phonenumbers<9.0.0,>=8.12 (from presidio-analyzer)\n",
" Downloading phonenumbers-8.13.32-py2.py3-none-any.whl (2.6 MB)\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m2.6/2.6 MB\u001b[0m \u001b[31m39.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hRequirement already satisfied: spacy-legacy<3.1.0,>=3.0.11 in /usr/local/lib/python3.10/dist-packages (from spacy<4.0.0,>=3.4.4->presidio-analyzer) (3.0.12)\n",
"Requirement already satisfied: spacy-loggers<2.0.0,>=1.0.0 in /usr/local/lib/python3.10/dist-packages (from spacy<4.0.0,>=3.4.4->presidio-analyzer) (1.0.5)\n",
"Requirement already satisfied: murmurhash<1.1.0,>=0.28.0 in /usr/local/lib/python3.10/dist-packages (from spacy<4.0.0,>=3.4.4->presidio-analyzer) (1.0.10)\n",
"Requirement already satisfied: cymem<2.1.0,>=2.0.2 in /usr/local/lib/python3.10/dist-packages (from spacy<4.0.0,>=3.4.4->presidio-analyzer) (2.0.8)\n",
"Requirement already satisfied: preshed<3.1.0,>=3.0.2 in /usr/local/lib/python3.10/dist-packages (from spacy<4.0.0,>=3.4.4->presidio-analyzer) (3.0.9)\n",
"Requirement already satisfied: thinc<8.3.0,>=8.2.2 in /usr/local/lib/python3.10/dist-packages (from spacy<4.0.0,>=3.4.4->presidio-analyzer) (8.2.3)\n",
"Requirement already satisfied: wasabi<1.2.0,>=0.9.1 in /usr/local/lib/python3.10/dist-packages (from spacy<4.0.0,>=3.4.4->presidio-analyzer) (1.1.2)\n",
"Requirement already satisfied: srsly<3.0.0,>=2.4.3 in /usr/local/lib/python3.10/dist-packages (from spacy<4.0.0,>=3.4.4->presidio-analyzer) (2.4.8)\n",
"Requirement already satisfied: catalogue<2.1.0,>=2.0.6 in /usr/local/lib/python3.10/dist-packages (from spacy<4.0.0,>=3.4.4->presidio-analyzer) (2.0.10)\n",
"Requirement already satisfied: weasel<0.4.0,>=0.1.0 in /usr/local/lib/python3.10/dist-packages (from spacy<4.0.0,>=3.4.4->presidio-analyzer) (0.3.4)\n",
"Requirement already satisfied: typer<0.10.0,>=0.3.0 in /usr/local/lib/python3.10/dist-packages (from spacy<4.0.0,>=3.4.4->presidio-analyzer) (0.9.0)\n",
"Requirement already satisfied: smart-open<7.0.0,>=5.2.1 in /usr/local/lib/python3.10/dist-packages (from spacy<4.0.0,>=3.4.4->presidio-analyzer) (6.4.0)\n",
"Requirement already satisfied: tqdm<5.0.0,>=4.38.0 in /usr/local/lib/python3.10/dist-packages (from spacy<4.0.0,>=3.4.4->presidio-analyzer) (4.66.2)\n",
"Requirement already satisfied: requests<3.0.0,>=2.13.0 in /usr/local/lib/python3.10/dist-packages (from spacy<4.0.0,>=3.4.4->presidio-analyzer) (2.31.0)\n",
"Requirement already satisfied: pydantic!=1.8,!=1.8.1,<3.0.0,>=1.7.4 in /usr/local/lib/python3.10/dist-packages (from spacy<4.0.0,>=3.4.4->presidio-analyzer) (2.6.4)\n",
"Requirement already satisfied: jinja2 in /usr/local/lib/python3.10/dist-packages (from spacy<4.0.0,>=3.4.4->presidio-analyzer) (3.1.3)\n",
"Requirement already satisfied: setuptools in /usr/local/lib/python3.10/dist-packages (from spacy<4.0.0,>=3.4.4->presidio-analyzer) (67.7.2)\n",
"Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.10/dist-packages (from spacy<4.0.0,>=3.4.4->presidio-analyzer) (24.0)\n",
"Requirement already satisfied: langcodes<4.0.0,>=3.2.0 in /usr/local/lib/python3.10/dist-packages (from spacy<4.0.0,>=3.4.4->presidio-analyzer) (3.3.0)\n",
"Requirement already satisfied: numpy>=1.19.0 in /usr/local/lib/python3.10/dist-packages (from spacy<4.0.0,>=3.4.4->presidio-analyzer) (1.25.2)\n",
"Requirement already satisfied: idna in /usr/local/lib/python3.10/dist-packages (from tldextract->presidio-analyzer) (3.6)\n",
"Collecting requests-file>=1.4 (from tldextract->presidio-analyzer)\n",
" Downloading requests_file-2.0.0-py2.py3-none-any.whl (4.2 kB)\n",
"Requirement already satisfied: filelock>=3.0.8 in /usr/local/lib/python3.10/dist-packages (from tldextract->presidio-analyzer) (3.13.1)\n",
"Requirement already satisfied: annotated-types>=0.4.0 in /usr/local/lib/python3.10/dist-packages (from pydantic!=1.8,!=1.8.1,<3.0.0,>=1.7.4->spacy<4.0.0,>=3.4.4->presidio-analyzer) (0.6.0)\n",
"Requirement already satisfied: pydantic-core==2.16.3 in /usr/local/lib/python3.10/dist-packages (from pydantic!=1.8,!=1.8.1,<3.0.0,>=1.7.4->spacy<4.0.0,>=3.4.4->presidio-analyzer) (2.16.3)\n",
"Requirement already satisfied: typing-extensions>=4.6.1 in /usr/local/lib/python3.10/dist-packages (from pydantic!=1.8,!=1.8.1,<3.0.0,>=1.7.4->spacy<4.0.0,>=3.4.4->presidio-analyzer) (4.10.0)\n",
"Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.10/dist-packages (from requests<3.0.0,>=2.13.0->spacy<4.0.0,>=3.4.4->presidio-analyzer) (3.3.2)\n",
"Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.10/dist-packages (from requests<3.0.0,>=2.13.0->spacy<4.0.0,>=3.4.4->presidio-analyzer) (2.0.7)\n",
"Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.10/dist-packages (from requests<3.0.0,>=2.13.0->spacy<4.0.0,>=3.4.4->presidio-analyzer) (2024.2.2)\n",
"Requirement already satisfied: blis<0.8.0,>=0.7.8 in /usr/local/lib/python3.10/dist-packages (from thinc<8.3.0,>=8.2.2->spacy<4.0.0,>=3.4.4->presidio-analyzer) (0.7.11)\n",
"Requirement already satisfied: confection<1.0.0,>=0.0.1 in /usr/local/lib/python3.10/dist-packages (from thinc<8.3.0,>=8.2.2->spacy<4.0.0,>=3.4.4->presidio-analyzer) (0.1.4)\n",
"Requirement already satisfied: click<9.0.0,>=7.1.1 in /usr/local/lib/python3.10/dist-packages (from typer<0.10.0,>=0.3.0->spacy<4.0.0,>=3.4.4->presidio-analyzer) (8.1.7)\n",
"Requirement already satisfied: cloudpathlib<0.17.0,>=0.7.0 in /usr/local/lib/python3.10/dist-packages (from weasel<0.4.0,>=0.1.0->spacy<4.0.0,>=3.4.4->presidio-analyzer) (0.16.0)\n",
"Requirement already satisfied: MarkupSafe>=2.0 in /usr/local/lib/python3.10/dist-packages (from jinja2->spacy<4.0.0,>=3.4.4->presidio-analyzer) (2.1.5)\n",
"Installing collected packages: phonenumbers, requests-file, tldextract, presidio-analyzer\n",
"Successfully installed phonenumbers-8.13.32 presidio-analyzer-2.2.353 requests-file-2.0.0 tldextract-5.1.1\n"
]
}
]
},
{
"cell_type": "code",
"source": [
"!pip install flair"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 1000
},
"id": "XWdmM-gGmHV-",
"outputId": "42e0e840-89df-4a99-a3d7-8d78fc7beff0"
},
"execution_count": 38,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Collecting flair\n",
" Downloading flair-0.13.1-py3-none-any.whl (388 kB)\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m388.3/388.3 kB\u001b[0m \u001b[31m3.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hCollecting boto3>=1.20.27 (from flair)\n",
" Downloading boto3-1.34.64-py3-none-any.whl (139 kB)\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m139.3/139.3 kB\u001b[0m \u001b[31m10.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hCollecting bpemb>=0.3.2 (from flair)\n",
" Downloading bpemb-0.3.4-py3-none-any.whl (19 kB)\n",
"Collecting conllu>=4.0 (from flair)\n",
" Downloading conllu-4.5.3-py2.py3-none-any.whl (16 kB)\n",
"Collecting deprecated>=1.2.13 (from flair)\n",
" Downloading Deprecated-1.2.14-py2.py3-none-any.whl (9.6 kB)\n",
"Collecting ftfy>=6.1.0 (from flair)\n",
" Downloading ftfy-6.2.0-py3-none-any.whl (54 kB)\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m54.4/54.4 kB\u001b[0m \u001b[31m9.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hRequirement already satisfied: gdown>=4.4.0 in /usr/local/lib/python3.10/dist-packages (from flair) (4.7.3)\n",
"Requirement already satisfied: gensim>=4.2.0 in /usr/local/lib/python3.10/dist-packages (from flair) (4.3.2)\n",
"Requirement already satisfied: huggingface-hub>=0.10.0 in /usr/local/lib/python3.10/dist-packages (from flair) (0.20.3)\n",
"Collecting janome>=0.4.2 (from flair)\n",
" Downloading Janome-0.5.0-py2.py3-none-any.whl (19.7 MB)\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m19.7/19.7 MB\u001b[0m \u001b[31m46.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hCollecting langdetect>=1.0.9 (from flair)\n",
" Downloading langdetect-1.0.9.tar.gz (981 kB)\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m981.5/981.5 kB\u001b[0m \u001b[31m67.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25h Preparing metadata (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
"Requirement already satisfied: lxml>=4.8.0 in /usr/local/lib/python3.10/dist-packages (from flair) (4.9.4)\n",
"Requirement already satisfied: matplotlib>=2.2.3 in /usr/local/lib/python3.10/dist-packages (from flair) (3.7.1)\n",
"Requirement already satisfied: more-itertools>=8.13.0 in /usr/local/lib/python3.10/dist-packages (from flair) (10.1.0)\n",
"Collecting mpld3>=0.3 (from flair)\n",
" Downloading mpld3-0.5.10-py3-none-any.whl (202 kB)\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m202.6/202.6 kB\u001b[0m \u001b[31m23.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hCollecting pptree>=3.1 (from flair)\n",
" Downloading pptree-3.1.tar.gz (3.0 kB)\n",
" Preparing metadata (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
"Requirement already satisfied: python-dateutil>=2.8.2 in /usr/local/lib/python3.10/dist-packages (from flair) (2.8.2)\n",
"Collecting pytorch-revgrad>=0.2.0 (from flair)\n",
" Downloading pytorch_revgrad-0.2.0-py3-none-any.whl (4.6 kB)\n",
"Requirement already satisfied: regex>=2022.1.18 in /usr/local/lib/python3.10/dist-packages (from flair) (2023.12.25)\n",
"Requirement already satisfied: scikit-learn>=1.0.2 in /usr/local/lib/python3.10/dist-packages (from flair) (1.2.2)\n",
"Collecting segtok>=1.5.11 (from flair)\n",
" Downloading segtok-1.5.11-py3-none-any.whl (24 kB)\n",
"Collecting sqlitedict>=2.0.0 (from flair)\n",
" Downloading sqlitedict-2.1.0.tar.gz (21 kB)\n",
" Preparing metadata (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
"Requirement already satisfied: tabulate>=0.8.10 in /usr/local/lib/python3.10/dist-packages (from flair) (0.9.0)\n",
"Requirement already satisfied: torch!=1.8,>=1.5.0 in /usr/local/lib/python3.10/dist-packages (from flair) (2.2.1+cu121)\n",
"Requirement already satisfied: tqdm>=4.63.0 in /usr/local/lib/python3.10/dist-packages (from flair) (4.66.2)\n",
"Collecting transformer-smaller-training-vocab>=0.2.3 (from flair)\n",
" Downloading transformer_smaller_training_vocab-0.3.3-py3-none-any.whl (14 kB)\n",
"Requirement already satisfied: transformers[sentencepiece]<5.0.0,>=4.18.0 in /usr/local/lib/python3.10/dist-packages (from flair) (4.38.2)\n",
"Collecting urllib3<2.0.0,>=1.0.0 (from flair)\n",
" Downloading urllib3-1.26.18-py2.py3-none-any.whl (143 kB)\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m143.8/143.8 kB\u001b[0m \u001b[31m23.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hCollecting wikipedia-api>=0.5.7 (from flair)\n",
" Downloading Wikipedia_API-0.6.0-py3-none-any.whl (14 kB)\n",
"Collecting semver<4.0.0,>=3.0.0 (from flair)\n",
" Downloading semver-3.0.2-py3-none-any.whl (17 kB)\n",
"Collecting botocore<1.35.0,>=1.34.64 (from boto3>=1.20.27->flair)\n",
" Downloading botocore-1.34.64-py3-none-any.whl (12.0 MB)\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m12.0/12.0 MB\u001b[0m \u001b[31m68.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hCollecting jmespath<2.0.0,>=0.7.1 (from boto3>=1.20.27->flair)\n",
" Downloading jmespath-1.0.1-py3-none-any.whl (20 kB)\n",
"Collecting s3transfer<0.11.0,>=0.10.0 (from boto3>=1.20.27->flair)\n",
" Downloading s3transfer-0.10.1-py3-none-any.whl (82 kB)\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m82.2/82.2 kB\u001b[0m \u001b[31m13.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hRequirement already satisfied: numpy in /usr/local/lib/python3.10/dist-packages (from bpemb>=0.3.2->flair) (1.25.2)\n",
"Requirement already satisfied: requests in /usr/local/lib/python3.10/dist-packages (from bpemb>=0.3.2->flair) (2.31.0)\n",
"Requirement already satisfied: sentencepiece in /usr/local/lib/python3.10/dist-packages (from bpemb>=0.3.2->flair) (0.1.99)\n",
"Requirement already satisfied: wrapt<2,>=1.10 in /usr/local/lib/python3.10/dist-packages (from deprecated>=1.2.13->flair) (1.14.1)\n",
"Requirement already satisfied: wcwidth<0.3.0,>=0.2.12 in /usr/local/lib/python3.10/dist-packages (from ftfy>=6.1.0->flair) (0.2.13)\n",
"Requirement already satisfied: filelock in /usr/local/lib/python3.10/dist-packages (from gdown>=4.4.0->flair) (3.13.1)\n",
"Requirement already satisfied: six in /usr/local/lib/python3.10/dist-packages (from gdown>=4.4.0->flair) (1.16.0)\n",
"Requirement already satisfied: beautifulsoup4 in /usr/local/lib/python3.10/dist-packages (from gdown>=4.4.0->flair) (4.12.3)\n",
"Requirement already satisfied: scipy>=1.7.0 in /usr/local/lib/python3.10/dist-packages (from gensim>=4.2.0->flair) (1.11.4)\n",
"Requirement already satisfied: smart-open>=1.8.1 in /usr/local/lib/python3.10/dist-packages (from gensim>=4.2.0->flair) (6.4.0)\n",
"Requirement already satisfied: fsspec>=2023.5.0 in /usr/local/lib/python3.10/dist-packages (from huggingface-hub>=0.10.0->flair) (2023.6.0)\n",
"Requirement already satisfied: pyyaml>=5.1 in /usr/local/lib/python3.10/dist-packages (from huggingface-hub>=0.10.0->flair) (6.0.1)\n",
"Requirement already satisfied: typing-extensions>=3.7.4.3 in /usr/local/lib/python3.10/dist-packages (from huggingface-hub>=0.10.0->flair) (4.10.0)\n",
"Requirement already satisfied: packaging>=20.9 in /usr/local/lib/python3.10/dist-packages (from huggingface-hub>=0.10.0->flair) (24.0)\n",
"Requirement already satisfied: contourpy>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib>=2.2.3->flair) (1.2.0)\n",
"Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.10/dist-packages (from matplotlib>=2.2.3->flair) (0.12.1)\n",
"Requirement already satisfied: fonttools>=4.22.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib>=2.2.3->flair) (4.49.0)\n",
"Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib>=2.2.3->flair) (1.4.5)\n",
"Requirement already satisfied: pillow>=6.2.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib>=2.2.3->flair) (9.4.0)\n",
"Requirement already satisfied: pyparsing>=2.3.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib>=2.2.3->flair) (3.1.2)\n",
"Requirement already satisfied: jinja2 in /usr/local/lib/python3.10/dist-packages (from mpld3>=0.3->flair) (3.1.3)\n",
"Requirement already satisfied: joblib>=1.1.1 in /usr/local/lib/python3.10/dist-packages (from scikit-learn>=1.0.2->flair) (1.3.2)\n",
"Requirement already satisfied: threadpoolctl>=2.0.0 in /usr/local/lib/python3.10/dist-packages (from scikit-learn>=1.0.2->flair) (3.3.0)\n",
"Requirement already satisfied: sympy in /usr/local/lib/python3.10/dist-packages (from torch!=1.8,>=1.5.0->flair) (1.12)\n",
"Requirement already satisfied: networkx in /usr/local/lib/python3.10/dist-packages (from torch!=1.8,>=1.5.0->flair) (3.2.1)\n",
"Collecting nvidia-cuda-nvrtc-cu12==12.1.105 (from torch!=1.8,>=1.5.0->flair)\n",
" Downloading nvidia_cuda_nvrtc_cu12-12.1.105-py3-none-manylinux1_x86_64.whl (23.7 MB)\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m23.7/23.7 MB\u001b[0m \u001b[31m25.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hCollecting nvidia-cuda-runtime-cu12==12.1.105 (from torch!=1.8,>=1.5.0->flair)\n",
" Downloading nvidia_cuda_runtime_cu12-12.1.105-py3-none-manylinux1_x86_64.whl (823 kB)\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m823.6/823.6 kB\u001b[0m \u001b[31m45.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hCollecting nvidia-cuda-cupti-cu12==12.1.105 (from torch!=1.8,>=1.5.0->flair)\n",
" Downloading nvidia_cuda_cupti_cu12-12.1.105-py3-none-manylinux1_x86_64.whl (14.1 MB)\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m14.1/14.1 MB\u001b[0m \u001b[31m72.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hCollecting nvidia-cudnn-cu12==8.9.2.26 (from torch!=1.8,>=1.5.0->flair)\n",
" Downloading nvidia_cudnn_cu12-8.9.2.26-py3-none-manylinux1_x86_64.whl (731.7 MB)\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m731.7/731.7 MB\u001b[0m \u001b[31m906.7 kB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hCollecting nvidia-cublas-cu12==12.1.3.1 (from torch!=1.8,>=1.5.0->flair)\n",
" Downloading nvidia_cublas_cu12-12.1.3.1-py3-none-manylinux1_x86_64.whl (410.6 MB)\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m410.6/410.6 MB\u001b[0m \u001b[31m3.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hCollecting nvidia-cufft-cu12==11.0.2.54 (from torch!=1.8,>=1.5.0->flair)\n",
" Downloading nvidia_cufft_cu12-11.0.2.54-py3-none-manylinux1_x86_64.whl (121.6 MB)\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m121.6/121.6 MB\u001b[0m \u001b[31m8.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hCollecting nvidia-curand-cu12==10.3.2.106 (from torch!=1.8,>=1.5.0->flair)\n",
" Downloading nvidia_curand_cu12-10.3.2.106-py3-none-manylinux1_x86_64.whl (56.5 MB)\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m56.5/56.5 MB\u001b[0m \u001b[31m10.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hCollecting nvidia-cusolver-cu12==11.4.5.107 (from torch!=1.8,>=1.5.0->flair)\n",
" Downloading nvidia_cusolver_cu12-11.4.5.107-py3-none-manylinux1_x86_64.whl (124.2 MB)\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m124.2/124.2 MB\u001b[0m \u001b[31m8.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hCollecting nvidia-cusparse-cu12==12.1.0.106 (from torch!=1.8,>=1.5.0->flair)\n",
" Downloading nvidia_cusparse_cu12-12.1.0.106-py3-none-manylinux1_x86_64.whl (196.0 MB)\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m196.0/196.0 MB\u001b[0m \u001b[31m2.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hCollecting nvidia-nccl-cu12==2.19.3 (from torch!=1.8,>=1.5.0->flair)\n",
" Downloading nvidia_nccl_cu12-2.19.3-py3-none-manylinux1_x86_64.whl (166.0 MB)\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m166.0/166.0 MB\u001b[0m \u001b[31m2.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hCollecting nvidia-nvtx-cu12==12.1.105 (from torch!=1.8,>=1.5.0->flair)\n",
" Downloading nvidia_nvtx_cu12-12.1.105-py3-none-manylinux1_x86_64.whl (99 kB)\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m99.1/99.1 kB\u001b[0m \u001b[31m15.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hRequirement already satisfied: triton==2.2.0 in /usr/local/lib/python3.10/dist-packages (from torch!=1.8,>=1.5.0->flair) (2.2.0)\n",
"Collecting nvidia-nvjitlink-cu12 (from nvidia-cusolver-cu12==11.4.5.107->torch!=1.8,>=1.5.0->flair)\n",
" Downloading nvidia_nvjitlink_cu12-12.4.99-py3-none-manylinux2014_x86_64.whl (21.1 MB)\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m21.1/21.1 MB\u001b[0m \u001b[31m70.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hRequirement already satisfied: tokenizers<0.19,>=0.14 in /usr/local/lib/python3.10/dist-packages (from transformers[sentencepiece]<5.0.0,>=4.18.0->flair) (0.15.2)\n",
"Requirement already satisfied: safetensors>=0.4.1 in /usr/local/lib/python3.10/dist-packages (from transformers[sentencepiece]<5.0.0,>=4.18.0->flair) (0.4.2)\n",
"Requirement already satisfied: protobuf in /usr/local/lib/python3.10/dist-packages (from transformers[sentencepiece]<5.0.0,>=4.18.0->flair) (3.20.3)\n",
"Collecting accelerate>=0.21.0 (from transformers[sentencepiece]<5.0.0,>=4.18.0->flair)\n",
" Downloading accelerate-0.28.0-py3-none-any.whl (290 kB)\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m290.1/290.1 kB\u001b[0m \u001b[31m32.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hRequirement already satisfied: soupsieve>1.2 in /usr/local/lib/python3.10/dist-packages (from beautifulsoup4->gdown>=4.4.0->flair) (2.5)\n",
"Requirement already satisfied: MarkupSafe>=2.0 in /usr/local/lib/python3.10/dist-packages (from jinja2->mpld3>=0.3->flair) (2.1.5)\n",
"Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.10/dist-packages (from requests->bpemb>=0.3.2->flair) (3.3.2)\n",
"Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.10/dist-packages (from requests->bpemb>=0.3.2->flair) (3.6)\n",
"Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.10/dist-packages (from requests->bpemb>=0.3.2->flair) (2024.2.2)\n",
"Requirement already satisfied: PySocks!=1.5.7,>=1.5.6 in /usr/local/lib/python3.10/dist-packages (from requests->bpemb>=0.3.2->flair) (1.7.1)\n",
"Requirement already satisfied: mpmath>=0.19 in /usr/local/lib/python3.10/dist-packages (from sympy->torch!=1.8,>=1.5.0->flair) (1.3.0)\n",
"Requirement already satisfied: psutil in /usr/local/lib/python3.10/dist-packages (from accelerate>=0.21.0->transformers[sentencepiece]<5.0.0,>=4.18.0->flair) (5.9.5)\n",
"Building wheels for collected packages: langdetect, pptree, sqlitedict\n",
" Building wheel for langdetect (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
" Created wheel for langdetect: filename=langdetect-1.0.9-py3-none-any.whl size=993227 sha256=9da87eaaff56d6d1421c337ae61089e29874a2de99038123b209c2cf6ffe4791\n",
" Stored in directory: /root/.cache/pip/wheels/95/03/7d/59ea870c70ce4e5a370638b5462a7711ab78fba2f655d05106\n",
" Building wheel for pptree (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
" Created wheel for pptree: filename=pptree-3.1-py3-none-any.whl size=4609 sha256=be019012224ff0981466d5ef57193c243fbbc1542c10b46f3ed8f17e84f74b0e\n",
" Stored in directory: /root/.cache/pip/wheels/9f/b6/0e/6f26eb9e6eb53ff2107a7888d72b5a6a597593956113037828\n",
" Building wheel for sqlitedict (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
" Created wheel for sqlitedict: filename=sqlitedict-2.1.0-py3-none-any.whl size=16862 sha256=056a323511a15e5bdbb990ad53b061cdb301623fdbf4a77ead3f71402b27bf97\n",
" Stored in directory: /root/.cache/pip/wheels/79/d6/e7/304e0e6cb2221022c26d8161f7c23cd4f259a9e41e8bbcfabd\n",
"Successfully built langdetect pptree sqlitedict\n",
"Installing collected packages: sqlitedict, pptree, janome, urllib3, semver, segtok, nvidia-nvtx-cu12, nvidia-nvjitlink-cu12, nvidia-nccl-cu12, nvidia-curand-cu12, nvidia-cufft-cu12, nvidia-cuda-runtime-cu12, nvidia-cuda-nvrtc-cu12, nvidia-cuda-cupti-cu12, nvidia-cublas-cu12, langdetect, jmespath, ftfy, deprecated, conllu, nvidia-cusparse-cu12, nvidia-cudnn-cu12, botocore, wikipedia-api, s3transfer, nvidia-cusolver-cu12, mpld3, bpemb, boto3, pytorch-revgrad, accelerate, transformer-smaller-training-vocab, flair\n",
" Attempting uninstall: urllib3\n",
" Found existing installation: urllib3 2.0.7\n",
" Uninstalling urllib3-2.0.7:\n",
" Successfully uninstalled urllib3-2.0.7\n",
"Successfully installed accelerate-0.28.0 boto3-1.34.64 botocore-1.34.64 bpemb-0.3.4 conllu-4.5.3 deprecated-1.2.14 flair-0.13.1 ftfy-6.2.0 janome-0.5.0 jmespath-1.0.1 langdetect-1.0.9 mpld3-0.5.10 nvidia-cublas-cu12-12.1.3.1 nvidia-cuda-cupti-cu12-12.1.105 nvidia-cuda-nvrtc-cu12-12.1.105 nvidia-cuda-runtime-cu12-12.1.105 nvidia-cudnn-cu12-8.9.2.26 nvidia-cufft-cu12-11.0.2.54 nvidia-curand-cu12-10.3.2.106 nvidia-cusolver-cu12-11.4.5.107 nvidia-cusparse-cu12-12.1.0.106 nvidia-nccl-cu12-2.19.3 nvidia-nvjitlink-cu12-12.4.99 nvidia-nvtx-cu12-12.1.105 pptree-3.1 pytorch-revgrad-0.2.0 s3transfer-0.10.1 segtok-1.5.11 semver-3.0.2 sqlitedict-2.1.0 transformer-smaller-training-vocab-0.3.3 urllib3-1.26.18 wikipedia-api-0.6.0\n"
]
},
{
"output_type": "display_data",
"data": {
"application/vnd.colab-display-data+json": {
"pip_warning": {
"packages": [
"urllib3"
]
},
"id": "dfdc4a89fa71429587bc109f13908415"
}
},
"metadata": {}
}
]
},
{
"cell_type": "code",
"source": [
"import os\n",
"\n",
"os.environ[\"KERAS_BACKEND\"] = \"tensorflow\"\n",
"\n",
"import os\n",
"import keras\n",
"import numpy as np\n",
"import tensorflow as tf\n",
"from keras import layers\n",
"from datasets import load_dataset\n",
"from collections import Counter\n",
"from conlleval import evaluate\n",
"\n",
"import pandas as pd\n",
"from google.colab import files\n",
"import matplotlib.pyplot as plt\n",
"\n",
"from transformers import AutoModel, AutoTokenizer\n",
"\n",
"import logging\n",
"from typing import Optional, List, Tuple, Set\n",
"from presidio_analyzer import (\n",
" RecognizerResult,\n",
" EntityRecognizer,\n",
" AnalysisExplanation,\n",
")\n",
"from presidio_analyzer.nlp_engine import NlpArtifacts\n",
"\n",
"from flair.data import Sentence\n",
"from flair.models import SequenceTagger\n"
],
"metadata": {
"id": "9FxNt5pZY0e2"
},
"execution_count": 19,
"outputs": []
},
{
"cell_type": "code",
"source": [
"class TransformerBlock(layers.Layer):\n",
" def __init__(self, embed_dim, num_heads, ff_dim, rate=0.1):\n",
" super().__init__()\n",
" self.att = keras.layers.MultiHeadAttention(\n",
" num_heads=num_heads, key_dim=embed_dim\n",
" )\n",
" self.ffn = keras.Sequential(\n",
" [\n",
" keras.layers.Dense(ff_dim, activation=\"relu\"),\n",
" keras.layers.Dense(embed_dim),\n",
" ]\n",
" )\n",
" self.layernorm1 = keras.layers.LayerNormalization(epsilon=1e-6)\n",
" self.layernorm2 = keras.layers.LayerNormalization(epsilon=1e-6)\n",
" self.dropout1 = keras.layers.Dropout(rate)\n",
" self.dropout2 = keras.layers.Dropout(rate)\n",
"\n",
" def call(self, inputs, training=False):\n",
" attn_output = self.att(inputs, inputs)\n",
" attn_output = self.dropout1(attn_output, training=training)\n",
" out1 = self.layernorm1(inputs + attn_output)\n",
" ffn_output = self.ffn(out1)\n",
" ffn_output = self.dropout2(ffn_output, training=training)\n",
" return self.layernorm2(out1 + ffn_output)\n"
],
"metadata": {
"id": "a2ro_nntY-FC"
},
"execution_count": 4,
"outputs": []
},
{
"cell_type": "code",
"source": [
"class TokenAndPositionEmbedding(layers.Layer):\n",
" def __init__(self, maxlen, vocab_size, embed_dim):\n",
" super().__init__()\n",
" self.token_emb = keras.layers.Embedding(\n",
" input_dim=vocab_size, output_dim=embed_dim\n",
" )\n",
" self.pos_emb = keras.layers.Embedding(input_dim=maxlen, output_dim=embed_dim)\n",
"\n",
" def call(self, inputs):\n",
" maxlen = tf.shape(inputs)[-1]\n",
" positions = tf.range(start=0, limit=maxlen, delta=1)\n",
" position_embeddings = self.pos_emb(positions)\n",
" token_embeddings = self.token_emb(inputs)\n",
" return token_embeddings + position_embeddings"
],
"metadata": {
"id": "jg0WkejPZBn8"
},
"execution_count": 5,
"outputs": []
},
{
"cell_type": "code",
"source": [
"class NERModel(keras.Model):\n",
" def __init__(\n",
" self, num_tags, vocab_size, maxlen=128, embed_dim=32, num_heads=2, ff_dim=32\n",
" ):\n",
" super().__init__()\n",
" self.embedding_layer = TokenAndPositionEmbedding(maxlen, vocab_size, embed_dim)\n",
" self.transformer_block = TransformerBlock(embed_dim, num_heads, ff_dim)\n",
" self.dropout1 = layers.Dropout(0.1)\n",
" self.ff = layers.Dense(ff_dim, activation=\"relu\")\n",
" self.dropout2 = layers.Dropout(0.1)\n",
" self.ff_final = layers.Dense(num_tags, activation=\"softmax\")\n",
"\n",
" def call(self, inputs, training=False):\n",
" x = self.embedding_layer(inputs)\n",
" x = self.transformer_block(x)\n",
" x = self.dropout1(x, training=training)\n",
" x = self.ff(x)\n",
" x = self.dropout2(x, training=training)\n",
" x = self.ff_final(x)\n",
" return x"
],
"metadata": {
"id": "HeMvk_zKZFXy"
},
"execution_count": 6,
"outputs": []
},
{
"cell_type": "code",
"source": [
"conll_data = load_dataset(\"conll2003\")\n"
],
"metadata": {
"id": "weGmhigxZMaT"
},
"execution_count": 7,
"outputs": []
},
{
"cell_type": "code",
"source": [
"def dataset_to_dataframe(dataset):\n",
" data_dict = {key: dataset[key] for key in dataset.features}\n",
" return pd.DataFrame(data_dict)\n",
"\n",
"# Combine all splits (train, validation, test) into a single DataFrame\n",
"conll_df = pd.concat([dataset_to_dataframe(conll_data[split]) for split in conll_data.keys()])"
],
"metadata": {
"id": "SEvvIFAgdcAF"
},
"execution_count": 8,
"outputs": []
},
{
"cell_type": "code",
"source": [
"csv_file_path = \"conll_data.csv\"\n",
"conll_df.to_csv(csv_file_path, index=False)\n",
"\n",
"# Download the CSV file to local machine\n",
"\n",
"files.download(csv_file_path)"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 17
},
"id": "UejgBp-Ng_l_",
"outputId": "98b45e90-3b08-4857-f7eb-42e9a319eb29"
},
"execution_count": 7,
"outputs": [
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.Javascript object>"
],
"application/javascript": [
"\n",
" async function download(id, filename, size) {\n",
" if (!google.colab.kernel.accessAllowed) {\n",
" return;\n",
" }\n",
" const div = document.createElement('div');\n",
" const label = document.createElement('label');\n",
" label.textContent = `Downloading \"${filename}\": `;\n",
" div.appendChild(label);\n",
" const progress = document.createElement('progress');\n",
" progress.max = size;\n",
" div.appendChild(progress);\n",
" document.body.appendChild(div);\n",
"\n",
" const buffers = [];\n",
" let downloaded = 0;\n",
"\n",
" const channel = await google.colab.kernel.comms.open(id);\n",
" // Send a message to notify the kernel that we're ready.\n",
" channel.send({})\n",
"\n",
" for await (const message of channel.messages) {\n",
" // Send a message to notify the kernel that we're ready.\n",
" channel.send({})\n",
" if (message.buffers) {\n",
" for (const buffer of message.buffers) {\n",
" buffers.push(buffer);\n",
" downloaded += buffer.byteLength;\n",
" progress.value = downloaded;\n",
" }\n",
" }\n",
" }\n",
" const blob = new Blob(buffers, {type: 'application/binary'});\n",
" const a = document.createElement('a');\n",
" a.href = window.URL.createObjectURL(blob);\n",
" a.download = filename;\n",
" div.appendChild(a);\n",
" a.click();\n",
" div.remove();\n",
" }\n",
" "
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.Javascript object>"
],
"application/javascript": [
"download(\"download_e9dfb994-0d94-46a0-a16d-296a01070e4a\", \"conll_data.csv\", 6111395)"
]
},
"metadata": {}
}
]
},
{
"cell_type": "code",
"source": [
"print(conll_df.head())"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "NRyX6MExgwi7",
"outputId": "78702706-75b5-4d4e-9cf7-08f21bb99dcb"
},
"execution_count": 8,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
" id tokens \\\n",
"0 0 [EU, rejects, German, call, to, boycott, Briti... \n",
"1 1 [Peter, Blackburn] \n",
"2 2 [BRUSSELS, 1996-08-22] \n",
"3 3 [The, European, Commission, said, on, Thursday... \n",
"4 4 [Germany, 's, representative, to, the, Europea... \n",
"\n",
" pos_tags \\\n",
"0 [22, 42, 16, 21, 35, 37, 16, 21, 7] \n",
"1 [22, 22] \n",
"2 [22, 11] \n",
"3 [12, 22, 22, 38, 15, 22, 28, 38, 15, 16, 21, 3... \n",
"4 [22, 27, 21, 35, 12, 22, 22, 27, 16, 21, 22, 2... \n",
"\n",
" chunk_tags \\\n",
"0 [11, 21, 11, 12, 21, 22, 11, 12, 0] \n",
"1 [11, 12] \n",
"2 [11, 12] \n",
"3 [11, 12, 12, 21, 13, 11, 11, 21, 13, 11, 12, 1... \n",
"4 [11, 11, 12, 13, 11, 12, 12, 11, 12, 12, 12, 1... \n",
"\n",
" ner_tags \n",
"0 [3, 0, 7, 0, 0, 0, 7, 0, 0] \n",
"1 [1, 2] \n",
"2 [5, 0] \n",
"3 [0, 3, 4, 0, 0, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, ... \n",
"4 [5, 0, 0, 0, 0, 3, 4, 0, 0, 0, 1, 2, 0, 0, 0, ... \n"
]
}
]
},
{
"cell_type": "code",
"source": [
"print(conll_df.describe())"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "LAiHg17QhO-2",
"outputId": "065d13c3-c8ea-40f3-f84a-2fc4f2332ff2"
},
"execution_count": 10,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
" id tokens pos_tags chunk_tags ner_tags\n",
"count 20744 20744 20744 20744 20744\n",
"unique 14041 18731 13126 11282 8047\n",
"top 0 [Scorers, :] [22, 11] [11, 12] [5, 0]\n",
"freq 3 30 611 1290 955\n"
]
}
]
},
{
"cell_type": "code",
"source": [
"print(conll_df.dtypes)"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "9LwwJ8zbhVlk",
"outputId": "c32dde53-bf78-4f94-aa32-1cdef388099e"
},
"execution_count": 11,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"id object\n",
"tokens object\n",
"pos_tags object\n",
"chunk_tags object\n",
"ner_tags object\n",
"dtype: object\n"
]
}
]
},
{
"cell_type": "code",
"source": [
"print(conll_df.isnull().sum())"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "njbG34F3hl5D",
"outputId": "81cb8929-f9a0-4a07-d1f6-f306d2ffc7c0"
},
"execution_count": 12,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"id 0\n",
"tokens 0\n",
"pos_tags 0\n",
"chunk_tags 0\n",
"ner_tags 0\n",
"dtype: int64\n"
]
}
]
},
{
"cell_type": "code",
"source": [
"label_counts = conll_df['ner_tags'].value_counts()\n",
"print(label_counts)"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "98pX56RShpgR",
"outputId": "18ef0b75-727b-4f2b-8ae9-6b4415e8e17a"
},
"execution_count": 13,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"[5, 0] 955\n",
"[3, 0, 0, 0, 0, 0, 0, 0] 663\n",
"[0, 1, 2, 0, 5, 0, 0] 582\n",
"[0, 0] 409\n",
"[3, 0, 3, 0] 352\n",
" ... \n",
"[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0] 1\n",
"[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] 1\n",
"[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 3, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] 1\n",
"[0, 0, 0, 0, 0, 0, 0, 3, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 1, 2, 0] 1\n",
"[0, 0, 0, 3, 4, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 8, 8, 0, 0, 0, 0, 0, 0, 0, 1, 0] 1\n",
"Name: ner_tags, Length: 8047, dtype: int64\n"
]
}
]
},
{
"cell_type": "code",
"source": [
"top_10_labels = label_counts.head(10)\n",
"\n",
"# Plot the distribution of the top 10 NER tags\n",
"plt.figure(figsize=(10, 6))\n",
"top_10_labels.plot(kind='bar')\n",
"plt.title('Top 10 Most Common NER Tags')\n",
"plt.xlabel('NER Tag')\n",
"plt.ylabel('Count')\n",
"plt.show()\n"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 710
},
"id": "Yd71HpRQhuoZ",
"outputId": "066c4b14-3edf-4139-e665-cdbf95dac172"
},
"execution_count": 14,
"outputs": [
{
"output_type": "display_data",
"data": {
"text/plain": [
"<Figure size 1000x600 with 1 Axes>"
],
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA1sAAAK1CAYAAAA+BfRDAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABf+0lEQVR4nO3deVxV1f7/8fcBlUEFnJjKiXIih0xTsa6RcsW0rna7eS3ralmUqTmmeW/OlWmaZVkOZdo3Lctvg0OChpqWKESaRmqDlKaBclEwSRnO/v3Rz/P1BBTnyOYMvJ6PB4+HZ6/FOZ+zXBvOm7332hbDMAwBAAAAACqVj6sLAAAAAABvRNgCAAAAABMQtgAAAADABIQtAAAAADABYQsAAAAATEDYAgAAAAATELYAAAAAwASELQAAAAAwAWELAAAAAExA2AIAAAAAExC2AKACLBZLhb62b99uei2vvPKK7rzzTjVp0kQWi0VDhw4tt++ZM2eUkJCgRo0aqXbt2rr55pv1xRdfVOh1YmNjZbFY1KJFizLbt2zZYnvfa9eudeat/KmPPvpI06dPd/j73n//fd1yyy1q2LChatWqpcjISA0cOFBbt26t/CK9yMX/89tuu61U2w8//CCLxaJ58+bZtm3fvv0P94e3337b1rdZs2Z2bbVr11aXLl30xhtv/GldQ4cOrdD+90f7AgC4Qg1XFwAAnuB//ud/7B6/8cYb2rJlS6ntbdq0Mb2WOXPm6OzZs+rSpYt+/vnncvtZrVb169dPX375pR577DE1bNhQL7/8smJjY5Wenl5uiLqUv7+/vvvuO6WmpqpLly52batWrZK/v7/Onz9/2e+pPB999JEWLVpU4cBlGIbuv/9+rVixQh07dtS4ceMUHh6un3/+We+//7569eqlzz77TN27dzetZm+wYcMGpaenq1OnThXq/+ijj+r6668vtT0mJsbu8bXXXqvx48dLkn7++We9+uqrGjJkiC5cuKAHH3yw3Od/6KGHFBcXZ3ucmZmpqVOnKiEhQX/5y19s26+66qoK1QsAVcYAADhsxIgRhqt+hP7www+G1Wo1DMMwateubQwZMqTMfmvWrDEkGe+++65t28mTJ42QkBDjrrvu+tPXuemmm4xrrrnGaNWqlTFmzBi7tl9//dUICgoy7rjjjlKvUZkcHednn33WkGSMGTPGNkaXeuONN4w9e/ZUZole5aabbjKaNGli1KtXz7jtttvs2jIzMw1JxrPPPmvbtm3btgr//zdt2tTo16+f3baTJ08aderUMdq0aeNQnWlpaYYk4/XXX3fo+wCgqnEaIQBUknPnzmn8+PFq3Lix/Pz81KpVK82bN0+GYdj1s1gsGjlypFatWqVWrVrJ399fnTp10o4dOyr0Ok2bNpXFYvnTfmvXrlVYWJj+/ve/27Y1atRIAwcO1IcffqgLFy5U6PXuuusurVmzRlar1bZt/fr1Kigo0MCBA8v8nr179+qWW25RUFCQ6tSpo169emn37t12fYqKijRjxgy1aNFC/v7+atCggW688UZt2bJF0m+nji1atEiS/Wmc5fn11181e/ZstW7dWvPmzSuz77333mt3hO7IkSO68847Vb9+fQUGBqpbt27auHGj3fdcPFXunXfe0YwZM3TFFVeobt26+sc//qG8vDxduHBBY8aMUWhoqOrUqaP77ruv1Nhe/D9/9913FR0drYCAAMXExOjAgQOSpCVLlujqq6+Wv7+/YmNj9cMPP5Sq/d1331WnTp0UEBCghg0b6p577tHx48ft+gwdOlR16tTR8ePHNWDAANWpU0eNGjXShAkTVFJSUu7YXapu3boaO3as1q9fX+FTTp3VqFEjtW7dWt9///1lP9f+/fs1dOhQRUVFyd/fX+Hh4br//vv13//+t1Tf7du3q3PnzvL399dVV12lJUuWaPr06aXmzJYtW3TjjTcqJCREderUUatWrfTvf//7smsFUH1wGiEAVALDMPS3v/1N27Zt07Bhw3TttdcqKSlJjz32mI4fP64FCxbY9f/kk0+0Zs0aPfroo/Lz89PLL7+sPn36KDU1VW3btq2Umvbu3avrrrtOPj72f1fr0qWLli5dqm+++Ubt2rX70+e5++67NX36dG3fvl09e/aUJK1evVq9evVSaGhoqf4ZGRn6y1/+oqCgIE2cOFE1a9bUkiVLFBsbq08++URdu3aVJE2fPl2zZ8/WAw88oC5duig/P1+ff/65vvjiC/31r3/VQw89pBMnTpR5umZZPv30U+Xm5mrMmDHy9fX90/7Z2dnq3r27CgoK9Oijj6pBgwZauXKl/va3v2nt2rW6/fbb7frPnj1bAQEBevzxx/Xdd9/pxRdfVM2aNeXj46PTp09r+vTp2r17t1asWKHmzZtr6tSpdt+/c+dOrVu3TiNGjLA936233qqJEyfq5Zdf1iOPPKLTp09r7ty5uv/+++2uL1uxYoXuu+8+XX/99Zo9e7ays7P1wgsv6LPPPtPevXsVEhJi61tSUqL4+Hh17dpV8+bN08cff6z58+frqquu0vDhw/90XCRp9OjRWrBggaZPn65169b9af+zZ88qJyen1PYGDRr8YUAuLi7WTz/9pHr16lWorj+yZcsWHTlyRPfdd5/Cw8OVkZGhpUuXKiMjQ7t377bVsXfvXvXp00cRERGaMWOGSkpKNHPmTDVq1Mju+TIyMnTrrbeqffv2mjlzpvz8/PTdd9/ps88+u+xaAVQjrj60BgCe6Pent33wwQeGJOPJJ5+06/ePf/zDsFgsxnfffWfbJsmQZHz++ee2bT/++KPh7+9v3H777Q7V8UenEdauXdu4//77S23fuHGjIclITEz8w+e+eBqhYRhG586djWHDhhmGYRinT582atWqZaxcubLM08gGDBhg1KpVy/j+++9t206cOGHUrVvX6NGjh21bhw4dSp1W9nuOnEb4wgsvGJKM999/v0L9x4wZY0gydu7cadt29uxZo3nz5kazZs2MkpISwzD+71S5tm3bGoWFhba+d911l2GxWIxbbrnF7nljYmKMpk2b2m2TZPj5+RmZmZm2bUuWLDEkGeHh4UZ+fr5t++TJkw1Jtr6FhYVGaGio0bZtW+PXX3+19duwYYMhyZg6dapt25AhQwxJxsyZM+1ev2PHjkanTp3+dEwu/T+fMWOGIclIT083DOOPTyMs7+vnn3+29W3atKnRu3dv49SpU8apU6eMAwcOGPfee68hyRgxYsSf1napsk4jLCgoKNXvrbfeMiQZO3bssG277bbbjMDAQOP48eO2bd9++61Ro0YNu7m2YMECQ5Jx6tQph2oDgEtxGiEAVIKPPvpIvr6+evTRR+22jx8/XoZhaNOmTXbbY2Ji7BYfaNKkifr376+kpKQKn+71Z3799Vf5+fmV2u7v729rr6i7775b7733ngoLC7V27Vr5+vqWOvIj/XZUZfPmzRowYICioqJs2yMiInT33Xfr008/VX5+viQpJCREGRkZ+vbbbx19a2W6+Lx169atUP+PPvpIXbp00Y033mjbVqdOHSUkJOiHH37Q119/bdf/X//6l2rWrGl73LVrV9uCHJfq2rWrjh07puLiYrvtvXr1UrNmzez6SdIdd9xhV/PF7UeOHJEkff755zp58qQeeeQR2/+dJPXr10+tW7cuddqjJD388MN2j//yl7/Ynq+iRo8erXr16mnGjBl/2nfq1KnasmVLqa/69evb9du8ebMaNWqkRo0aqV27dvqf//kf3XfffXr22Wcdqq0sAQEBtn+fP39eOTk56tatmyTZTocsKSnRxx9/rAEDBigyMtLW/+qrr9Ytt9xi93wXjxZ++OGHdqfQAoAjCFsAUAl+/PFHRUZGlvqgf3F1wh9//NFue1krAbZs2VIFBQU6depUpdQUEBBQ5nVZF1cPvPTD6Z8ZNGiQ8vLytGnTJq1atUq33nprmaHm1KlTKigoUKtWrUq1tWnTRlarVceOHZMkzZw5U2fOnFHLli3Vrl07PfbYY9q/f3+Fa/q9oKAgSb+d0lYRP/74Y7l1Xmy/VJMmTeweBwcHS5IaN25carvValVeXp7T3y9Jp0+ftqujrFpbt25dqk5/f/9Sp8TVq1fP9nwVFRwcrDFjxmjdunXau3fvH/Zt166d4uLiSn3VqlXLrl/Xrl21ZcsWJSYmat68eQoJCdHp06dL9XNGbm6uRo8erbCwMAUEBKhRo0Zq3ry5JNn+L06ePKlff/1VV199danv//22f/7zn7rhhhv0wAMPKCwsTIMGDdI777xD8ALgEMIWAHipiIiIMpeGv7jt0r/sV+S5YmNjNX/+fO3YsUN33333ZdfXo0cPff/991q+fLnatm2rV199Vdddd51effVVp56vdevWkmRbdKKylXcdWHnbjd8tjHK5319RFbleraJGjx6tkJCQCh3dqoiGDRsqLi5O8fHxGj9+vN5880198MEHeuGFFy77uQcOHKhly5bp4Ycf1nvvvafNmzcrMTFRkpwKSAEBAdqxY4c+/vhj3Xvvvdq/f7/++c9/6q9//WulHX0G4P0IWwBQCZo2baoTJ06UOqpy6NAhW/ulyjp17ptvvlFgYGCpoxLOuvbaa/XFF1+U+qC5Z88eBQYGqmXLlg493913362dO3cqKChIffv2LbNPo0aNFBgYqMOHD5dqO3TokHx8fOyO5NSvX1/33Xef3nrrLR07dkzt27e3u6dWRVZdvOjGG29UvXr19NZbb1Xow3DTpk3LrfNiuzu4WEdZtR4+fNjUOi8e3frwww//9OiWM/r166ebbrpJTz/9tM6dO+f085w+fVrJycl6/PHHNWPGDN1+++3661//ancqqySFhoba7h33e2Vt8/HxUa9evfTcc8/p66+/1lNPPaWtW7dq27ZtTtcKoHohbAFAJejbt69KSkr00ksv2W1fsGCBLBZLqetBUlJS7JbVPnbsmD788EP17t270o5M/OMf/1B2drbee+8927acnBy9++67uu2228q8nuvPnm/atGl6+eWXyz3ty9fXV71799aHH35ot3x5dna2Vq9erRtvvNF2ut/vl+SuU6eOrr76artTH2vXri1JOnPmzJ/WFxgYqEmTJungwYOaNGlSmUeG3nzzTaWmpkr67f8sNTVVKSkptvZz585p6dKlatasmaKjo//0NatC586dFRoaqsWLF9uNzaZNm3Tw4EH169fP1NcfM2aMQkJCNHPmTFOef9KkSfrvf/+rZcuWOf0cF/eZ3/+fP//886X6xcXF6YMPPtCJEyds27/77rtS11Xm5uaWep1rr71Wkip82wQAYOl3AKgEt912m26++Wb95z//0Q8//KAOHTpo8+bN+vDDDzVmzBhdddVVdv3btm2r+Ph4u6XfJVXodK3169fryy+/lPTbvar279+vJ598UpL0t7/9Te3bt5f0Wzjq1q2b7rvvPn399ddq2LChXn75ZZWUlDh1WlhwcLDdUafyPPnkk7b7Ez3yyCOqUaOGlixZogsXLmju3Lm2ftHR0YqNjVWnTp1Uv359ff7551q7dq1Gjhxp63NxEZFHH31U8fHx8vX11aBBg8p97ccee0wZGRmaP3++tm3bpn/84x8KDw9XVlaWPvjgA6WmpmrXrl2SpMcff1xvvfWWbrnlFj366KOqX7++Vq5cqczMTP3v//5vqSXzXaVmzZqaM2eO7rvvPt1000266667bEu/N2vWTGPHjjX19YODgzV69Og/nDM7d+60XQt4qfbt29vmY3luueUWtW3bVs8995xGjBhhtwhJRQUFBalHjx6aO3euioqKdMUVV2jz5s3KzMws1Xf69OnavHmzbrjhBg0fPtz2R5K2bdtq3759tn4zZ87Ujh071K9fPzVt2lQnT57Uyy+/rCuvvNJuURUA+EOuXAoRADxVWUuSnz171hg7dqwRGRlp1KxZ02jRooXx7LPPGlar1a6f/v9S12+++abRokULw8/Pz+jYsaOxbdu2Cr32xeW9y/q6dClswzCM3NxcY9iwYUaDBg2MwMBA46abbjLS0tIq9DqXLgNenrKWfjcMw/jiiy+M+Ph4o06dOkZgYKBx8803G7t27bLr8+STTxpdunQxQkJCjICAAKN169bGU089Zbe8enFxsTFq1CijUaNGhsViqfAy8GvXrjV69+5t1K9f36hRo4YRERFh/POf/zS2b99u1+/77783/vGPfxghISGGv7+/0aVLF2PDhg0Veo+vv/66IanUeE6bNq3UkuEqY3nzspZS/6PXW7NmjdGxY0fDz8/PqF+/vjF48GDjp59+suszZMgQo3bt2qXG42JNf6a8//PTp08bwcHBDi/9Pm3aNFvfpk2blrvU/4oVK8qcv+Upa+n3n376ybj99tuNkJAQIzg42LjzzjuNEydOlKrDMAwjOTnZ6Nixo1GrVi3jqquuMl599VVj/Pjxhr+/v12f/v37G5GRkUatWrWMyMhI46677jK++eabCtUIAIZhGBbDcPIKXACAUywWi0aMGFHqlEMArjNgwIBKvRUBAEhcswUAAKqZ399j7ttvv9VHH32k2NhY1xQEwGtxzRYAAKhWoqKiNHToUEVFRenHH3/UK6+8olq1amnixImuLg2AlyFsAQCAaqVPnz566623lJWVJT8/P8XExOjpp58u82bjAHA5uGYLAAAAAEzg0mu2duzYodtuu02RkZGyWCz64IMP7NoNw9DUqVMVERGhgIAAxcXFlbpwNTc3V4MHD1ZQUJBCQkI0bNgw/fLLL3Z99u/fr7/85S/y9/dX48aN7ZYeBgAAAAAzuDRsnTt3Th06dNCiRYvKbJ87d64WLlyoxYsXa8+ePapdu7bi4+Pt7uUxePBgZWRkaMuWLdqwYYN27NihhIQEW3t+fr569+6tpk2bKj09Xc8++6ymT5+upUuXmv7+AAAAAFRfbnMaocVi0fvvv68BAwZI+u2oVmRkpMaPH68JEyZIkvLy8hQWFqYVK1Zo0KBBOnjwoKKjo5WWlqbOnTtLkhITE9W3b1/99NNPioyM1CuvvKL//Oc/ysrKUq1atST9diPLDz74QIcOHapQbVarVSdOnFDdunVlsVgq/80DAAAA8AiGYejs2bOKjIyUj88fH7ty2wUyMjMzlZWVpbi4ONu24OBgde3aVSkpKRo0aJBSUlIUEhJiC1qSFBcXJx8fH+3Zs0e33367UlJS1KNHD1vQkqT4+HjNmTNHp0+fVr169Uq99oULF3ThwgXb4+PHjys6OtqkdwoAAADA0xw7dkxXXnnlH/Zx27CVlZUlSQoLC7PbHhYWZmvLyspSaGioXXuNGjVUv359uz7Nmzcv9RwX28oKW7Nnz9aMGTNKbT927JiCgoKcfEcAAAAAPF1+fr4aN26sunXr/mlftw1brjR58mSNGzfO9vjigAYFBRG2AAAAAFTo8iKXLpDxR8LDwyVJ2dnZdtuzs7NtbeHh4Tp58qRde3FxsXJzc+36lPUcl77G7/n5+dmCFQELAAAAgDPcNmw1b95c4eHhSk5Otm3Lz8/Xnj17FBMTI0mKiYnRmTNnlJ6ebuuzdetWWa1Wde3a1dZnx44dKioqsvXZsmWLWrVqVeYphAAAAABQGVwatn755Rft27dP+/btk/Tbohj79u3T0aNHZbFYNGbMGD355JNat26dDhw4oH/961+KjIy0rVjYpk0b9enTRw8++KBSU1P12WefaeTIkRo0aJAiIyMlSXfffbdq1aqlYcOGKSMjQ2vWrNELL7xgd5ogAAAAAFQ2ly79vn37dt18882ltg8ZMkQrVqyQYRiaNm2ali5dqjNnzujGG2/Uyy+/rJYtW9r65ubmauTIkVq/fr18fHx0xx13aOHChapTp46tz/79+zVixAilpaWpYcOGGjVqlCZNmlThOvPz8xUcHKy8vDxOKQQAAACqMUeygdvcZ8udEbYAAAAASI5lA7e9ZgsAAAAAPBlhCwAAAABMQNgCAAAAABMQtgAAAADABIQtAAAAADABYQsAAAAATEDYAgAAAAATELYAAAAAwASELQAAAAAwAWELAAAAAExA2AIAAAAAExC2AAAAAMAEhC0AAAAAMAFhCwAAAABMUMPVBVRXzR7f6OoSyvXDM/1cXQIAAADg8TiyBQAAAAAmIGwBAAAAgAkIWwAAAABgAsIWAAAAAJiAsAUAAAAAJiBsAQAAAIAJCFsAAAAAYALCFgAAAACYgLAFAAAAACYgbAEAAACACQhbAAAAAGACwhYAAAAAmICwBQAAAAAmIGwBAAAAgAkIWwAAAABgAsIWAAAAAJiAsAUAAAAAJiBsAQAAAIAJCFsAAAAAYALCFgAAAACYgLAFAAAAACYgbAEAAACACQhbAAAAAGACwhYAAAAAmICwBQAAAAAmIGwBAAAAgAkIWwAAAABgAsIWAAAAAJiAsAUAAAAAJiBsAQAAAIAJCFsAAAAAYALCFgAAAACYgLAFAAAAACYgbAEAAACACQhbAAAAAGACwhYAAAAAmICwBQAAAAAmIGwBAAAAgAkIWwAAAABgAsIWAAAAAJiAsAUAAAAAJiBsAQAAAIAJCFsAAAAAYALCFgAAAACYgLAFAAAAACYgbAEAAACACQhbAAAAAGACwhYAAAAAmICwBQAAAAAmIGwBAAAAgAkIWwAAAABgAsIWAAAAAJiAsAUAAAAAJiBsAQAAAIAJCFsAAAAAYALCFgAAAACYgLAFAAAAACYgbAEAAACACQhbAAAAAGACwhYAAAAAmICwBQAAAAAmIGwBAAAAgAkIWwAAAABgAsIWAAAAAJiAsAUAAAAAJiBsAQAAAIAJ3DpslZSUaMqUKWrevLkCAgJ01VVXadasWTIMw9bHMAxNnTpVERERCggIUFxcnL799lu758nNzdXgwYMVFBSkkJAQDRs2TL/88ktVvx0AAAAA1Yhbh605c+bolVde0UsvvaSDBw9qzpw5mjt3rl588UVbn7lz52rhwoVavHix9uzZo9q1ays+Pl7nz5+39Rk8eLAyMjK0ZcsWbdiwQTt27FBCQoIr3hIAAACAasJiXHqYyM3ceuutCgsL02uvvWbbdscddyggIEBvvvmmDMNQZGSkxo8frwkTJkiS8vLyFBYWphUrVmjQoEE6ePCgoqOjlZaWps6dO0uSEhMT1bdvX/3000+KjIz80zry8/MVHBysvLw8BQUFVcp7a/b4xkp5HjP88Ew/V5cAAAAAuCVHsoFbH9nq3r27kpOT9c0330iSvvzyS3366ae65ZZbJEmZmZnKyspSXFyc7XuCg4PVtWtXpaSkSJJSUlIUEhJiC1qSFBcXJx8fH+3Zs6fM171w4YLy8/PtvgAAAADAETVcXcAfefzxx5Wfn6/WrVvL19dXJSUleuqppzR48GBJUlZWliQpLCzM7vvCwsJsbVlZWQoNDbVrr1GjhurXr2/r83uzZ8/WjBkzKvvtAAAAAKhG3PrI1jvvvKNVq1Zp9erV+uKLL7Ry5UrNmzdPK1euNPV1J0+erLy8PNvXsWPHTH09AAAAAN7HrY9sPfbYY3r88cc1aNAgSVK7du30448/avbs2RoyZIjCw8MlSdnZ2YqIiLB9X3Z2tq699lpJUnh4uE6ePGn3vMXFxcrNzbV9/+/5+fnJz8/PhHcEAAAAoLpw6yNbBQUF8vGxL9HX11dWq1WS1Lx5c4WHhys5OdnWnp+frz179igmJkaSFBMTozNnzig9Pd3WZ+vWrbJareratWsVvAsAAAAA1ZFbH9m67bbb9NRTT6lJkya65pprtHfvXj333HO6//77JUkWi0VjxozRk08+qRYtWqh58+aaMmWKIiMjNWDAAElSmzZt1KdPHz344INavHixioqKNHLkSA0aNKhCKxECAAAAgDPcOmy9+OKLmjJlih555BGdPHlSkZGReuihhzR16lRbn4kTJ+rcuXNKSEjQmTNndOONNyoxMVH+/v62PqtWrdLIkSPVq1cv+fj46I477tDChQtd8ZYAAAAAVBNufZ8td8F9tgAAAABIXnSfLQAAAADwVIQtAAAAADABYQsAAAAATEDYAgAAAAATELYAAAAAwASELQAAAAAwAWELAAAAAExA2AIAAAAAExC2AAAAAMAEhC0AAAAAMAFhCwAAAABMQNgCAAAAABMQtgAAAADABIQtAAAAADABYQsAAAAATEDYAgAAAAATELYAAAAAwASELQAAAAAwAWELAAAAAExA2AIAAAAAExC2AAAAAMAEhC0AAAAAMAFhCwAAAABMQNgCAAAAABMQtgAAAADABIQtAAAAADABYQsAAAAATEDYAgAAAAATELYAAAAAwASELQAAAAAwAWELAAAAAExA2AIAAAAAExC2AAAAAMAEhC0AAAAAMAFhCwAAAABMQNgCAAAAABMQtgAAAADABIQtAAAAADABYQsAAAAATEDYAgAAAAATELYAAAAAwASELQAAAAAwAWELAAAAAExA2AIAAAAAExC2AAAAAMAEhC0AAAAAMAFhCwAAAABMQNgCAAAAABMQtgAAAADABIQtAAAAADABYQsAAAAATEDYAgAAAAATELYAAAAAwASELQAAAAAwAWELAAAAAExA2AIAAAAAExC2AAAAAMAENVxdAFBRzR7f6OoSyvXDM/1cXQIAAADcDEe2AAAAAMAEhC0AAAAAMAFhCwAAAABMQNgCAAAAABMQtgAAAADABIQtAAAAADABYQsAAAAATEDYAgAAAAATELYAAAAAwASELQAAAAAwAWELAAAAAExA2AIAAAAAExC2AAAAAMAEhC0AAAAAMAFhCwAAAABMQNgCAAAAABMQtgAAAADABIQtAAAAADABYQsAAAAATEDYAgAAAAATELYAAAAAwASELQAAAAAwAWELAAAAAEzg9mHr+PHjuueee9SgQQMFBASoXbt2+vzzz23thmFo6tSpioiIUEBAgOLi4vTtt9/aPUdubq4GDx6soKAghYSEaNiwYfrll1+q+q0AAAAAqEbcOmydPn1aN9xwg2rWrKlNmzbp66+/1vz581WvXj1bn7lz52rhwoVavHix9uzZo9q1ays+Pl7nz5+39Rk8eLAyMjK0ZcsWbdiwQTt27FBCQoIr3hIAAACAaqKGqwv4I3PmzFHjxo31+uuv27Y1b97c9m/DMPT888/riSeeUP/+/SVJb7zxhsLCwvTBBx9o0KBBOnjwoBITE5WWlqbOnTtLkl588UX17dtX8+bNU2RkZNW+KQAAAADVglsf2Vq3bp06d+6sO++8U6GhoerYsaOWLVtma8/MzFRWVpbi4uJs24KDg9W1a1elpKRIklJSUhQSEmILWpIUFxcnHx8f7dmzp+reDAAAAIBqxa3D1pEjR/TKK6+oRYsWSkpK0vDhw/Xoo49q5cqVkqSsrCxJUlhYmN33hYWF2dqysrIUGhpq116jRg3Vr1/f1uf3Lly4oPz8fLsvAAAAAHCEW59GaLVa1blzZz399NOSpI4dO+qrr77S4sWLNWTIENNed/bs2ZoxY4Zpzw8AAADA+7n1ka2IiAhFR0fbbWvTpo2OHj0qSQoPD5ckZWdn2/XJzs62tYWHh+vkyZN27cXFxcrNzbX1+b3JkycrLy/P9nXs2LFKeT8AAAAAqg+3Dls33HCDDh8+bLftm2++UdOmTSX9tlhGeHi4kpOTbe35+fnas2ePYmJiJEkxMTE6c+aM0tPTbX22bt0qq9Wqrl27lvm6fn5+CgoKsvsCAAAAAEe49WmEY8eOVffu3fX0009r4MCBSk1N1dKlS7V06VJJksVi0ZgxY/Tkk0+qRYsWat68uaZMmaLIyEgNGDBA0m9Hwvr06aMHH3xQixcvVlFRkUaOHKlBgwaxEiEAAAAA07h12Lr++uv1/vvva/LkyZo5c6aaN2+u559/XoMHD7b1mThxos6dO6eEhASdOXNGN954oxITE+Xv72/rs2rVKo0cOVK9evWSj4+P7rjjDi1cuNAVbwkAAABANWExDMNwdRHuLj8/X8HBwcrLy6u0UwqbPb6xUp7HDD8808/VJZSJMQMAAICrOZIN3PqaLQAAAADwVIQtAAAAADCBW1+zBeDycfolAACAa3BkCwAAAABMQNgCAAAAABMQtgAAAADABIQtAAAAADABYQsAAAAATEDYAgAAAAATELYAAAAAwASELQAAAAAwAWELAAAAAExA2AIAAAAAExC2AAAAAMAEhC0AAAAAMAFhCwAAAABMQNgCAAAAABMQtgAAAADABIQtAAAAADABYQsAAAAATEDYAgAAAAATOBW2oqKi9N///rfU9jNnzigqKuqyiwIAAAAAT+dU2Prhhx9UUlJSavuFCxd0/Pjxyy4KAAAAADxdDUc6r1u3zvbvpKQkBQcH2x6XlJQoOTlZzZo1q7TiAAAAAMBTORS2BgwYIEmyWCwaMmSIXVvNmjXVrFkzzZ8/v9KKAwAAAABP5VDYslqtkqTmzZsrLS1NDRs2NKUoAAAAAPB0DoWtizIzMyu7DgAAAADwKk6FLUlKTk5WcnKyTp48aTviddHy5csvuzAAAAAA8GROha0ZM2Zo5syZ6ty5syIiImSxWCq7LgAAAADwaE6FrcWLF2vFihW69957K7seAAAAAPAKTt1nq7CwUN27d6/sWgAAAADAazgVth544AGtXr26smsBAAAAAK/h1GmE58+f19KlS/Xxxx+rffv2qlmzpl37c889VynFAQAAAICncips7d+/X9dee60k6auvvrJrY7EMAAAAAHAybG3btq2y6wAAAAAAr+LUNVsAAAAAgD/m1JGtm2+++Q9PF9y6davTBQEAAACAN3AqbF28XuuioqIi7du3T1999ZWGDBlSGXUBAAAAgEdzKmwtWLCgzO3Tp0/XL7/8clkFAQAAAIA3qNRrtu655x4tX768Mp8SAAAAADxSpYatlJQU+fv7V+ZTAgAAAIBHcuo0wr///e92jw3D0M8//6zPP/9cU6ZMqZTCAAAAAMCTORW2goOD7R77+PioVatWmjlzpnr37l0phQEAAACAJ3MqbL3++uuVXQcAAAAAeBWnwtZF6enpOnjwoCTpmmuuUceOHSulKAAAAADwdE6FrZMnT2rQoEHavn27QkJCJElnzpzRzTffrLfffluNGjWqzBoBAAAAwOM4tRrhqFGjdPbsWWVkZCg3N1e5ubn66quvlJ+fr0cffbSyawQAAAAAj+PUka3ExER9/PHHatOmjW1bdHS0Fi1axAIZAAAAACAnj2xZrVbVrFmz1PaaNWvKarVedlEAAAAA4OmcCls9e/bU6NGjdeLECdu248ePa+zYserVq1elFQcAAAAAnsqpsPXSSy8pPz9fzZo101VXXaWrrrpKzZs3V35+vl588cXKrhEAAAAAPI5T12w1btxYX3zxhT7++GMdOnRIktSmTRvFxcVVanEAAAAA4KkcOrK1detWRUdHKz8/XxaLRX/96181atQojRo1Stdff72uueYa7dy506xaAQAAAMBjOBS2nn/+eT344IMKCgoq1RYcHKyHHnpIzz33XKUVBwAAAACeyqGw9eWXX6pPnz7ltvfu3Vvp6emXXRQAAAAAeDqHwlZ2dnaZS75fVKNGDZ06deqyiwIAAAAAT+dQ2Lriiiv01Vdfldu+f/9+RUREXHZRAAAAAODpHApbffv21ZQpU3T+/PlSbb/++qumTZumW2+9tdKKAwAAAABP5dDS70888YTee+89tWzZUiNHjlSrVq0kSYcOHdKiRYtUUlKi//znP6YUCgAAAACexKGwFRYWpl27dmn48OGaPHmyDMOQJFksFsXHx2vRokUKCwszpVAAAAAA8CQO39S4adOm+uijj3T69Gl99913MgxDLVq0UL169cyoDwAAAAA8ksNh66J69erp+uuvr8xaAAAAAMBrOLRABgAAAACgYghbAAAAAGACwhYAAAAAmICwBQAAAAAmIGwBAAAAgAkIWwAAAABgAsIWAAAAAJiAsAUAAAAAJiBsAQAAAIAJCFsAAAAAYALCFgAAAACYgLAFAAAAACYgbAEAAACACQhbAAAAAGACwhYAAAAAmICwBQAAAAAmIGwBAAAAgAkIWwAAAABgAsIWAAAAAJiAsAUAAAAAJqjh6gIc8cwzz2jy5MkaPXq0nn/+eUnS+fPnNX78eL399tu6cOGC4uPj9fLLLyssLMz2fUePHtXw4cO1bds21alTR0OGDNHs2bNVo4ZHvX0AVaTZ4xtdXUK5fnimn6tLAAAAFeQxR7bS0tK0ZMkStW/f3m772LFjtX79er377rv65JNPdOLECf3973+3tZeUlKhfv34qLCzUrl27tHLlSq1YsUJTp06t6rcAAAAAoBrxiLD1yy+/aPDgwVq2bJnq1atn256Xl6fXXntNzz33nHr27KlOnTrp9ddf165du7R7925J0ubNm/X111/rzTff1LXXXqtbbrlFs2bN0qJFi1RYWOiqtwQAAADAy3lE2BoxYoT69eunuLg4u+3p6ekqKiqy2966dWs1adJEKSkpkqSUlBS1a9fO7rTC+Ph45efnKyMjo8zXu3DhgvLz8+2+AAAAAMARbn/R0ttvv60vvvhCaWlppdqysrJUq1YthYSE2G0PCwtTVlaWrc+lQeti+8W2ssyePVszZsyohOoBAAAAVFdufWTr2LFjGj16tFatWiV/f/8qe93JkycrLy/P9nXs2LEqe20AAAAA3sGtw1Z6erpOnjyp6667TjVq1FCNGjX0ySefaOHChapRo4bCwsJUWFioM2fO2H1fdna2wsPDJUnh4eHKzs4u1X6xrSx+fn4KCgqy+wIAAAAAR7h12OrVq5cOHDigffv22b46d+6swYMH2/5ds2ZNJScn277n8OHDOnr0qGJiYiRJMTExOnDggE6ePGnrs2XLFgUFBSk6OrrK3xMAAACA6sGtr9mqW7eu2rZta7etdu3aatCggW37sGHDNG7cONWvX19BQUEaNWqUYmJi1K1bN0lS7969FR0drXvvvVdz585VVlaWnnjiCY0YMUJ+fn5V/p4AAAAAVA9uHbYqYsGCBfLx8dEdd9xhd1Pji3x9fbVhwwYNHz5cMTExql27toYMGaKZM2e6sGoAAAAA3s7jwtb27dvtHvv7+2vRokVatGhRud/TtGlTffTRRyZXBgAAAAD/x62v2QIAAAAAT0XYAgAAAAATELYAAAAAwASELQAAAAAwAWELAAAAAExA2AIAAAAAExC2AAAAAMAEhC0AAAAAMAFhCwAAAABMQNgCAAAAABMQtgAAAADABIQtAAAAADABYQsAAAAATEDYAgAAAAATELYAAAAAwAQ1XF0AAMA7NHt8o6tLKNcPz/RzdQllYswAwLtxZAsAAAAATEDYAgAAAAATELYAAAAAwASELQAAAAAwAWELAAAAAExA2AIAAAAAExC2AAAAAMAE3GcLAAB4FO5PBsBTcGQLAAAAAExA2AIAAAAAExC2AAAAAMAEhC0AAAAAMAFhCwAAAABMQNgCAAAAABMQtgAAAADABNxnCwAAwMtxbzLANTiyBQAAAAAmIGwBAAAAgAkIWwAAAABgAsIWAAAAAJiAsAUAAAAAJiBsAQAAAIAJCFsAAAAAYALCFgAAAACYgLAFAAAAACYgbAEAAACACQhbAAAAAGACwhYAAAAAmICwBQAAAAAmIGwBAAAAgAkIWwAAAABgAsIWAAAAAJiAsAUAAAAAJiBsAQAAAIAJCFsAAAAAYALCFgAAAACYgLAFAAAAACao4eoCAAAAAHfU7PGNri6hXD8808/VJaACCFsAAAAAKgUB1R6nEQIAAACACQhbAAAAAGACwhYAAAAAmICwBQAAAAAmIGwBAAAAgAkIWwAAAABgAsIWAAAAAJiAsAUAAAAAJiBsAQAAAIAJCFsAAAAAYALCFgAAAACYgLAFAAAAACYgbAEAAACACQhbAAAAAGACwhYAAAAAmICwBQAAAAAmIGwBAAAAgAkIWwAAAABgAsIWAAAAAJiAsAUAAAAAJiBsAQAAAIAJCFsAAAAAYALCFgAAAACYgLAFAAAAACYgbAEAAACACQhbAAAAAGACtw5bs2fP1vXXX6+6desqNDRUAwYM0OHDh+36nD9/XiNGjFCDBg1Up04d3XHHHcrOzrbrc/ToUfXr10+BgYEKDQ3VY489puLi4qp8KwAAAACqGbcOW5988olGjBih3bt3a8uWLSoqKlLv3r117tw5W5+xY8dq/fr1evfdd/XJJ5/oxIkT+vvf/25rLykpUb9+/VRYWKhdu3Zp5cqVWrFihaZOneqKtwQAAACgmqjh6gL+SGJiot3jFStWKDQ0VOnp6erRo4fy8vL02muvafXq1erZs6ck6fXXX1ebNm20e/dudevWTZs3b9bXX3+tjz/+WGFhYbr22ms1a9YsTZo0SdOnT1etWrVc8dYAAAAAeDm3PrL1e3l5eZKk+vXrS5LS09NVVFSkuLg4W5/WrVurSZMmSklJkSSlpKSoXbt2CgsLs/WJj49Xfn6+MjIyynydCxcuKD8/3+4LAAAAABzhMWHLarVqzJgxuuGGG9S2bVtJUlZWlmrVqqWQkBC7vmFhYcrKyrL1uTRoXWy/2FaW2bNnKzg42PbVuHHjSn43AAAAALydx4StESNG6KuvvtLbb79t+mtNnjxZeXl5tq9jx46Z/poAAAAAvItbX7N10ciRI7Vhwwbt2LFDV155pW17eHi4CgsLdebMGbujW9nZ2QoPD7f1SU1NtXu+i6sVXuzze35+fvLz86vkdwEAAACgOnHrI1uGYWjkyJF6//33tXXrVjVv3tyuvVOnTqpZs6aSk5Nt2w4fPqyjR48qJiZGkhQTE6MDBw7o5MmTtj5btmxRUFCQoqOjq+aNAAAAAKh23PrI1ogRI7R69Wp9+OGHqlu3ru0aq+DgYAUEBCg4OFjDhg3TuHHjVL9+fQUFBWnUqFGKiYlRt27dJEm9e/dWdHS07r33Xs2dO1dZWVl64oknNGLECI5eAQAAADCNW4etV155RZIUGxtrt/3111/X0KFDJUkLFiyQj4+P7rjjDl24cEHx8fF6+eWXbX19fX21YcMGDR8+XDExMapdu7aGDBmimTNnVtXbAAAAAFANuXXYMgzjT/v4+/tr0aJFWrRoUbl9mjZtqo8++qgySwMAAACAP+TW12wBAAAAgKcibAEAAACACQhbAAAAAGACwhYAAAAAmICwBQAAAAAmIGwBAAAAgAkIWwAAAABgAsIWAAAAAJiAsAUAAAAAJiBsAQAAAIAJCFsAAAAAYALCFgAAAACYgLAFAAAAACYgbAEAAACACQhbAAAAAGACwhYAAAAAmICwBQAAAAAmIGwBAAAAgAkIWwAAAABgAsIWAAAAAJiAsAUAAAAAJiBsAQAAAIAJCFsAAAAAYALCFgAAAACYgLAFAAAAACYgbAEAAACACQhbAAAAAGACwhYAAAAAmICwBQAAAAAmIGwBAAAAgAkIWwAAAABgAsIWAAAAAJiAsAUAAAAAJiBsAQAAAIAJCFsAAAAAYALCFgAAAACYgLAFAAAAACYgbAEAAACACQhbAAAAAGACwhYAAAAAmICwBQAAAAAmIGwBAAAAgAkIWwAAAABgAsIWAAAAAJiAsAUAAAAAJiBsAQAAAIAJCFsAAAAAYALCFgAAAACYgLAFAAAAACYgbAEAAACACQhbAAAAAGACwhYAAAAAmICwBQAAAAAmIGwBAAAAgAkIWwAAAABgAsIWAAAAAJiAsAUAAAAAJiBsAQAAAIAJCFsAAAAAYALCFgAAAACYgLAFAAAAACYgbAEAAACACQhbAAAAAGACwhYAAAAAmICwBQAAAAAmIGwBAAAAgAkIWwAAAABgAsIWAAAAAJiAsAUAAAAAJiBsAQAAAIAJCFsAAAAAYALCFgAAAACYgLAFAAAAACYgbAEAAACACQhbAAAAAGACwhYAAAAAmICwBQAAAAAmIGwBAAAAgAkIWwAAAABgAsIWAAAAAJiAsAUAAAAAJqhWYWvRokVq1qyZ/P391bVrV6Wmprq6JAAAAABeqtqErTVr1mjcuHGaNm2avvjiC3Xo0EHx8fE6efKkq0sDAAAA4IWqTdh67rnn9OCDD+q+++5TdHS0Fi9erMDAQC1fvtzVpQEAAADwQjVcXUBVKCwsVHp6uiZPnmzb5uPjo7i4OKWkpJTqf+HCBV24cMH2OC8vT5KUn59faTVZLxRU2nNVtsp8n5WJMXMO4+Y4xsw5jJvjGDPnMG6OY8ycw7g5rjqM2cXnMQzjT/tajIr08nAnTpzQFVdcoV27dikmJsa2feLEifrkk0+0Z88eu/7Tp0/XjBkzqrpMAAAAAB7i2LFjuvLKK/+wT7U4suWoyZMna9y4cbbHVqtVubm5atCggSwWiwsrKy0/P1+NGzfWsWPHFBQU5OpyPAbj5jjGzDmMm+MYM+cwbo5jzJzDuDmOMXOOu46bYRg6e/asIiMj/7RvtQhbDRs2lK+vr7Kzs+22Z2dnKzw8vFR/Pz8/+fn52W0LCQkxs8TLFhQU5FaT0FMwbo5jzJzDuDmOMXMO4+Y4xsw5jJvjGDPnuOO4BQcHV6hftVggo1atWurUqZOSk5Nt26xWq5KTk+1OKwQAAACAylItjmxJ0rhx4zRkyBB17txZXbp00fPPP69z587pvvvuc3VpAAAAALxQtQlb//znP3Xq1ClNnTpVWVlZuvbaa5WYmKiwsDBXl3ZZ/Pz8NG3atFKnPeKPMW6OY8ycw7g5jjFzDuPmOMbMOYyb4xgz53jDuFWL1QgBAAAAoKpVi2u2AAAAAKCqEbYAAAAAwASELQAAAAAwAWELAAAAAExQbVYj9GT5+fkOf4+73fjNFRg3VBXmmuMYM8C9sY+iqnj7XGM1Qg/g4+Mji8VS4f4Wi0XffPONoqKiTKzK/TFujvv73//u8PcsXrxYoaGhJlTjOZhrjmPMnDNu3DiHv+eJJ55Q/fr1TajGMzBmzmEfdRxzzTnePtcIWx7Ax8dH//u//1uhndEwDPXt21dfffWVx0xCszBujvPx8dHAgQMVEBBQof6rV6/WwYMHq/WYScw1ZzBmzvHx8VFMTIxq1apVof6ffvqpDh8+XK3HjTFzDvuo45hrzvH2ucZphB6gadOm6tGjhxo0aFCh/lFRUapZs6bJVbk/xs05CxcurPCRqrVr15pcjWdgrjmOMXPe+++/X+F9tG7duiZX4xkYM8exjzqHueY4b59rHNkCYPPJJ5/ohhtuUI0aFfs7zKeffqrrr7/eo+/sDniSlStXatCgQRXe51avXq3+/furdu3aJlfmvhgzVBXmGspC2AIAAAAAE3AaoQfJycnR8uXLlZKSoqysLElSeHi4unfvrqFDh6pRo0YurtA9MW7OycrK0p49e+zGrGvXrgoPD3dxZe6LueY4xsx5xcXFysjIsBu36Ohojzq9pqoxZo5jH3UOc81x3jrXOLLlIdLS0hQfH6/AwEDFxcUpLCxMkpSdna3k5GQVFBQoKSlJnTt3dnGl7oVxc9y5c+f00EMP6e2335bFYrFdsJqbmyvDMHTXXXdpyZIlCgwMdHGl7oW55jjGzDlWq1VTp07VokWLlJeXZ9cWHByskSNHasaMGfLx4VaaFzFmzmEfdRxzzTlePdcMeISuXbsaCQkJhtVqLdVmtVqNhIQEo1u3bi6ozL0xbo4bNmyY0aJFCyMxMdEoLi62bS8uLjaSkpKMli1bGg888IALK3RPzDXHMWbOeeyxx4xGjRoZixcvNjIzM42CggKjoKDAyMzMNJYsWWKEhoYaEydOdHWZboUxcw77qOOYa87x5rlG2PIQ/v7+xsGDB8ttP3jwoOHv71+FFXkGxs1xISEhxmeffVZu+6effmqEhIRUYUWegbnmOMbMOWFhYUZiYmK57YmJiUZoaGgVVuT+GDPnsI86jrnmHG+eaxzD9BDh4eFKTU0ttz01NdV2yBX/h3FznNVq/cN7hNSqVUtWq7UKK/IMzDXHMWbOOXv2rCIjI8ttj4iI0Llz56qwIvfHmDmHfdRxzDXnePNcY4EMDzFhwgQlJCQoPT1dvXr1KnUu67JlyzRv3jwXV+l+GDfH3XrrrUpISNBrr72mjh072rXt3btXw4cP12233eai6twXc81xjJlzYmNjNWHCBK1atUoNGza0a8vJydGkSZMUGxvrmuLcFGPmHPZRxzHXnOPVc83Vh9ZQcW+//bbRtWtXo0aNGobFYjEsFotRo0YNo2vXrsaaNWtcXZ7bYtwck5uba/Tp08ewWCxG/fr1jdatWxutW7c26tevb/j4+Bi33HKLcfr0aVeX6ZaYa45jzBx39OhRo23btkaNGjWMjh07Gn369DH69OljdOzY0ahRo4bRvn174+jRo64u060wZs5jH3UMc8153jrXWI3QAxUVFSknJ0eS1LBhQ5YRrSDGzTGHDh0qtfxqTEyMWrdu7eLK3B9zzXGMmWOsVquSkpK0e/fuUvto7969WemsDIzZ5WEfrTjm2uXxtrlG2AIAAAAAExCtAQAAAMAEhC0AAAAAMAFhCwAAAABMQNgCAAAAABMQtrzIjh07lJeX5+oyPA7jhqrCXHMcYwa4N/ZRVBVPnWuELS8SGxurqKgozZ8/39WleBTGzXHNmzfXsGHDdOLECVeX4lGYa45jzJzTs2dPzZo1SwUFBa4uxWMwZs5hH3Ucc805njrXCFteJDMzU2vXrlV2drarS/EojJvjhgwZopKSEt1www2uLsWjMNccx5g5p0mTJkpOTua+eA5gzJzDPuo45ppzPHWucZ8tAAC8VH5+voKCglxdhkdhzFBVmGvVA2HLwxUVFXn8nbWrQnFxsTIyMuzu5B4dHc3YodIx1y5fdna2Lly4oCZNmri6FADi5xqqjjfOtRquLgAV884772jAgAGqVauWJOmll17Ss88+q59++kn16tXTo48+qqlTp7q4SvdjtVo1depULVq0qNRFlcHBwRo5cqRmzJghHx/OqL3U119/rZdeekkpKSl2P/BiYmI0cuRIRUdHu7hC98Ncc9zZs2c1fPhw7dy5U7GxsVq2bJnGjh2rV155RRaLRTfeeKPWr1/PX37LkJOTo+XLl5faR7t3766hQ4eqUaNGLq7Q/TBmjuPnmnOYa47z5rnGkS0P4evrq59//lmhoaF6/fXX9cgjj2jixInq2rWr9u7dq9mzZ+v555/XAw884OpS3crEiRO1YsUKzZo1S/Hx8QoLC5P021/ON2/erClTpmjo0KGaM2eOiyt1H5s2bdKAAQN03XXXlRqzLVu2KD09XR9++KHi4+NdXKl7Ya45btSoUfr444/1yCOP6L333lNwcLC+//57LV68WCUlJRo+fLgGDBigp556ytWlupW0tDTFx8crMDBQcXFxdnMtOTlZBQUFSkpKUufOnV1cqftgzJzDzzXHMdec49VzzYBHsFgsRnZ2tmEYhtGlSxdj7ty5du0vv/yy0bFjR1eU5tbCwsKMxMTEctsTExON0NDQKqzI/bVv396YMmVKue3Tpk0z2rVrV4UVeQbmmuMaN25sbN261TAMwzh+/LhhsViM9evX29o3bNhgtGrVylXlua2uXbsaCQkJhtVqLdVmtVqNhIQEo1u3bi6ozH0xZs7h55rjmGvO8ea55nnH4qoxi8UiSTpy5Ih69+5t19a7d2999913rijLrZ09e1aRkZHltkdEROjcuXNVWJH7++abbzR48OBy2++66y59++23VViRZ2CuOe7kyZO6+uqrJUmRkZEKCAhQy5Ytbe1t27bVsWPHXFWe2/ryyy81duxY2++ES1ksFo0dO1b79u2r+sLcGGPmHH6uOY655hxvnmuELQ+SmJiodevWyd/fv9S9Gc6fP1/mjl3dxcbGasKECcrJySnVlpOTo0mTJik2NrbqC3NjzZo108aNG8tt37hxo5o2bVqFFXkG5prjGjRooFOnTtke9+/fXyEhIbbHv/zyi/z8/FxQmXsLDw9Xampque2pqam2U3DwG8bMOfxccxxzzTnePNdYIMODDBkyxPbvrVu3KiYmxvZ49+7duuqqq1xRlltbvHix+vbtq4iICLVr187uHOADBw4oOjpaGzZscHGV7mXmzJm6++67tX379jLPN09MTNTq1atdXKX7Ya45rn379kpLS9N1110nSaXmVVpamtq0aeOK0tzahAkTlJCQoPT0dPXq1avUPrps2TLNmzfPxVW6F8bMOfxccxxzzTnePNdYIMNLbNiwQTVr1mTRgjJYrVYlJSVp9+7dpVbW6927t0eubGO2Xbt2aeHChWWuRjh69Gi7oI//w1xzTG5urnx8fOyOZl1q06ZNCggI8Ni/ZpppzZo1WrBggdLT01VSUiLpt4WUOnXqpHHjxmngwIEurtD9MGbO4eea45hrzvHWuUbYAgDAQxUVFdlOu2nYsKFH34umqjBmqCrMNUiELY+wf/9+tW3btsKJPiMjQ61atVKNGpwlClQF9lEAAFAWwpYH8PX1VVZWVoVvghcUFKR9+/YpKirK5MoASOyjAACgbPxZ1QMYhqEpU6YoMDCwQv0LCwtNrgjApdhHAQBAWQhbHqBHjx46fPhwhfvHxMQoICDAxIoAXIp9FAAAlIXTCAEAAADABJ65hiJQiXr27KlZs2aVulE0yvfGG2/o+++/d3UZqAbYP52zY8cO5eXluboMj8KYOYd91HHMNed46lwjbKHaa9KkiZKTk9W6dWtXl+Ixhg4dqujoaI0aNcrVpcDLsX86JzY2VlFRUZo/f76rS/EYjJlz2Ecdx1xzjqfONa7ZQrW3YsUKSVJ+fr5rC/EgVqtVmZmZ2rRpk6tLgZdj/3ROZmamjhw5wj7qAMbMOeyjjmOuOcdT5xrXbAEAAACACTiyBa+Xk5Oj5cuXKyUlRVlZWZKk8PBwde/eXUOHDq3wvZGqs6KiIv3www8KDQ1VcHCwq8uBF2H/dF5xcbEyMjLsxi06Olo1a9Z0cWXuizFzHPuoc5hrjvPWucaRLXi1tLQ0xcfHKzAwUHFxcQoLC5MkZWdnKzk5WQUFBUpKSlLnzp1dXKn7mDt3rkaNGqWAgACVlJRo0qRJevHFF1VcXCwfHx/de++9WrJkCb8wcNnYP51jtVo1depULVq0qNRF9sHBwRo5cqRmzJghHx8uy76IMXMO+6jjmGvO8eq5ZgBerGvXrkZCQoJhtVpLtVmtViMhIcHo1q2bCypzXz4+PkZ2drZhGIbx7LPPGvXq1TOWL19uZGRkGG+++aYRGhpqzJkzx8VVwhuwfzrnscceMxo1amQsXrzYyMzMNAoKCoyCggIjMzPTWLJkiREaGmpMnDjR1WW6FcbMOeyjjmOuOceb5xphC17N39/fOHjwYLntBw8eNPz9/auwIvdnsVhsYatjx47GkiVL7NrffPNN45prrnFFafAy7J/OCQsLMxITE8ttT0xMNEJDQ6uwIvfHmDmHfdRxzDXnePNc4xgmvFp4eLhSU1PLbU9NTbUdqsb/sVgskqSjR4+qe/fudm3du3dXZmamK8qCl2H/dM7Zs2cVGRlZbntERITOnTtXhRW5P8bMOeyjjmOuOceb5xoLZMCrTZgwQQkJCUpPT1evXr1KnQO8bNkyzZs3z8VVup9ly5apTp06qlWrlnJzc+3azp49Kz8/PxdVBm/C/umc2NhYTZgwQatWrVLDhg3t2nJycjRp0iTFxsa6pjg3xZg5h33Uccw153jzXGOBDHi9NWvWaMGCBUpPT1dJSYkkydfXV506ddK4ceM0cOBAF1foXpo1a2Y7siVJo0eP1pgxY2yPX3jhBb399ttKSUlxQXXwNuyfjjt27Jj69u2rQ4cOqV27dnYfSg4cOKDo6Ght2LBBjRs3dnGl7oMxcx77qGOYa87z1rlG2EK1UVRUpJycHElSw4YNWU3PSbt375afn586duzo6lLgRdg/HWO1WpWUlKTdu3fbLZEcExOj3r17s9JZGRizy8M+WnHMtcvjbXONsAUAAAAAJiBaAwAAr7V//35ZrdYK98/IyFBxcbGJFQGoTjiyBQAAvJavr6+ysrLUqFGjCvUPCgrSvn37FBUVZXJlAKoDViMEAABeyzAMTZkyRYGBgRXqX1hYaHJFAKoTwhYAAPBaPXr00OHDhyvcPyYmRgEBASZWBKA64TRCVHs7duxQhw4dFBwc7OpSAPwO+yfg3thHUVU8da6xQAaqvdjYWEVFRWn+/PmuLsVjNG/eXMOGDdOJEydcXQq8HPunc3r27KlZs2apoKDA1aXAy7GPOo790zmeOtcIW6j2MjMztXbtWmVnZ7u6FI8xZMgQlZSU6IYbbnB1KfBy7J/OadKkiZKTk9W6dWtXlwIvxz7qOPZP53jqXOM0QgAAvFR+fr6CgoJcXQaAMrB/Vg+ELVQLxcXFysjIsLuTe3R0tMfflRzwRtnZ2bpw4YKaNGni6lIAiN+hqDreONdYjRBezWq1aurUqVq0aJHy8vLs2oKDgzVy5EjNmDFDPj6cUXupr7/+Wi+99JJSUlLsfuDFxMRo5MiRio6OdnGF8AZnz57V8OHDtXPnTsXGxmrZsmUaO3asXnnlFVksFt14441av349f/ktQ05OjpYvX15qH+3evbuGDh1a4XtKAX+E36HOYf90nDfPNY5swatNnDhRK1as0KxZsxQfH6+wsDBJv/3lfPPmzZoyZYqGDh2qOXPmuLhS97Fp0yYNGDBA1113Xakx27Jli9LT0/Xhhx8qPj7exZXC040aNUoff/yxHnnkEb333nsKDg7W999/r8WLF6ukpETDhw/XgAED9NRTT7m6VLeSlpam+Ph4BQYGKi4uzm4fTU5OVkFBgZKSktS5c2cXVwpPx+9Qx7F/Oser55oBeLGwsDAjMTGx3PbExEQjNDS0Cityf+3btzemTJlSbvu0adOMdu3aVWFF8FaNGzc2tm7dahiGYRw/ftywWCzG+vXrbe0bNmwwWrVq5ary3FbXrl2NhIQEw2q1lmqzWq1GQkKC0a1bNxdUBm/D71DHsX86x5vnmucdiwMccPbsWUVGRpbbHhERoXPnzlVhRe7vm2++0eDBg8ttv+uuu/Ttt99WYUXwVidPntTVV18tSYqMjFRAQIBatmxpa2/btq2OHTvmqvLc1pdffqmxY8fKYrGUarNYLBo7dqz27dtX9YXB6/A71HHsn87x5rlG2IJXi42N1YQJE5STk1OqLScnR5MmTVJsbGzVF+bGmjVrpo0bN5bbvnHjRjVt2rQKK4K3atCggU6dOmV73L9/f4WEhNge//LLL/Lz83NBZe4tPDxcqamp5banpqbaTsEBLge/Qx3H/ukcb55rLJABr7Z48WL17dtXERERateund05wAcOHFB0dLQ2bNjg4irdy8yZM3X33Xdr+/btZZ5vnpiYqNWrV7u4SniD9u3bKy0tTdddd50klZpXaWlpatOmjStKc2sTJkxQQkKC0tPT1atXr1L76LJlyzRv3jwXVwlvwO9Qx7F/Oseb5xoLZMDrWa1WJSUlaffu3aVW1uvdu7dHrmxjtl27dmnhwoVlrkY4evRoxcTEuLhCeIPc3Fz5+PjYHc261KZNmxQQEOCxf80005o1a7RgwQKlp6erpKREkuTr66tOnTpp3LhxGjhwoIsrhLfgd6jj2D+d461zjbAFAICHKioqsp1207BhQ4++Fw3gbdg/IXHNFgDABfbv3y+r1Vrh/hkZGSouLjaxIs9Us2ZNRUREKCIigg9yqFTso5eP/RMSR7YAAC7g6+urrKysCt/cMygoSPv27VNUVJTJlQGQ2EeBysICGQCAKmcYhqZMmaLAwMAK9S8sLDS5IgCXYh8FKgdhCwBQ5Xr06KHDhw9XuH9MTIwCAgJMrAjApdhHgcrBaYQAAAAAYAIWyEC117NnT82aNUsFBQWuLsVjvPHGG/r+++9dXQaAcuzYsUN5eXmuLgNAGdg/neOpn9cIW6j2mjRpouTkZLVu3drVpXiMoUOHKjo6WqNGjXJ1KQDKEBsbq6ioKM2fP9/VpQD4HfZP53jq5zWu2UK1t2LFCklSfn6+awvxIFarVZmZmdq0aZOrSwFQhszMTB05coR9FHBD7J/O8dTPa1yzBQAAAAAm4MgWvF5OTo6WL1+ulJQUZWVlSZLCw8PVvXt3DR06tML3EAEAd1JcXKyMjAy7n2vR0dHcPBVwA+yfjvPWz2sc2YJXS0tLU3x8vAIDAxUXF6ewsDBJUnZ2tpKTk1VQUKCkpCR17tzZxZW6j6KiIv3nP//Re++9p/r16+vhhx/W/fffb2vPzs5WZGSkSkpKXFglUH1ZrVZNnTpVixYtKnWRfXBwsEaOHKkZM2bIx4fLsoGqxv7pHG/+vEbYglfr1q2bOnTooMWLF8tisdi1GYahhx9+WPv371dKSoqLKnQ/06dP1+LFizVhwgSdOXNGL730kv75z39qyZIlkn77wRcRESGr1eriSoHqaeLEiVqxYoVmzZql+Ph4uw8lmzdv1pQpUzR06FDNmTPHxZUC1Q/7p3O8+fMaYQteLSAgQHv37i135ZpDhw6pY8eO+vXXX6u4MvfVokULLViwQLfeeqsk6bvvvtMtt9yiG2+8UcuXL9fJkyc5sgW4UHh4uFauXKn4+Pgy25OSkvSvf/1L2dnZVVwZAPZP53jz5zWOYcKrhYeHKzU1tdz21NRU21+d8Jvjx4+rbdu2tsdXX321tm/frl27dunee+8lZAEudvbsWUVGRpbbHhERoXPnzlVhRQAuYv90jjd/XmOBDHi1CRMmKCEhQenp6erVq1epc4CXLVumefPmubhK9xIeHq7vv/9ezZo1s2274oortG3bNt18880aOnSoy2oD8Ns9eiZMmKBVq1apYcOGdm05OTmaNGmSYmNjXVMcUM2xfzrHmz+vcRohvN6aNWu0YMECpaen247K+Pr6qlOnTho3bpwGDhzo4grdywMPPCDDMPTaa6+Vajt+/LhiY2N15MgRjnABLnLs2DH17dtXhw4dUrt27ew+lBw4cEDR0dHasGGDGjdu7OJKgeqH/dN53vp5jbCFaqOoqEg5OTmSpIYNG7L8ajl+/PFHHTp0qNzzzU+cOKEtW7ZoyJAhVVwZgIusVquSkpK0e/duuyWSY2Ji1Lt3b1Y6A1yI/fPyeNvnNcIWAAAAAJiAaA0AAABcpv379zt0W5SMjAwVFxebWBHcAUe2AAAAgMvk6+urrKwsNWrUqEL9g4KCtG/fPkVFRZlcGVyJ1QgBAACAy2QYhqZMmaLAwMAK9S8sLDS5IrgDwhYAAABwmXr06KHDhw9XuH9MTIwCAgJMrAjugNMIUe3t2LFDHTp0UHBwsKtLAQAAQBk89fMaC2Sg2ouNjVVUVJTmz5/v6lI8RvPmzTVs2DCdOHHC1aUAKEPPnj01a9YsFRQUuLoUAKgUnvp5jbCFai8zM1Nr165Vdna2q0vxGEOGDFFJSYluuOEGV5cCoAxNmjRRcnKyWrdu7epSAKBSeOrnNU4jBADAS+Xn5ysoKMjVZQBAtUXYQrVQXFysjIwMuzu5R0dHe/xdyQEAALyFN35eYzVCeDWr1aqpU6dq0aJFysvLs2sLDg7WyJEjNWPGDPn4cEZtRR07dkzTpk3T8uXLXV0KUG3l5ORo+fLlSklJsftQ0r17dw0dOrTC9/kBAHfgzZ/XPK9iwAGPP/64li5dqmeeeUZHjhzRuXPndO7cOR05ckRz5szR0qVLNXnyZFeX6VFyc3O1cuVKV5cBVFtpaWlq2bKlFi5cqODgYPXo0UM9evRQcHCwFi5cqNatW+vzzz93dZkAUGHe/HmN0wjh1cLDw7Vy5UrFx8eX2Z6UlKR//etfHnexpZnWrVv3h+1HjhzR+PHjVVJSUkUVAbhUt27d1KFDBy1evFgWi8WuzTAMPfzww9q/f79SUlJcVCEAOMabP69xGiG82tmzZxUZGVlue0REhM6dO1eFFbm/AQMGyGKx6I/+DvP7D3gAqs6XX36pFStWlLkfWiwWjR07Vh07dnRBZQDgHG/+vMZphPBqsbGxmjBhgnJyckq15eTkaNKkSYqNja36wtxYRESE3nvvPVmt1jK/vvjiC1eXCFRr4eHhSk1NLbc9NTVVYWFhVVgRAFweb/68xpEteLXFixerb9++ioiIULt27WwfQLKzs3XgwAFFR0drw4YNLq7SvXTq1Enp6enq379/me1/dtQLgLkmTJighIQEpaenq1evXnY/15KTk7Vs2TLNmzfPxVUCQMV58+c1rtmC17NarUpKStLu3bvtVu2KiYlR7969PXJlGzPt3LlT586dU58+fcpsP3funD7//HPddNNNVVwZgIvWrFmjBQsWKD093Xb9pK+vrzp16qRx48Zp4MCBLq4QABzjrZ/XCFsAAHiooqIi22k3DRs29Oh70QCAN/LMiAgAAFSzZk1FREQoIiKCoAXAI+3fv19Wq7XC/TMyMlRcXGxiRZWLI1sAAAAAXMLX11dZWVkVvhl7UFCQ9u3bp6ioKJMrqxwskAEAAADAJQzD0JQpUxQYGFih/oWFhSZXVLkIWwAAAABcokePHjp8+HCF+8fExCggIMDEiioXpxECAAAAgAlYIAPVXs+ePTVr1iwVFBS4uhSPsWPHDuXl5bm6DADlYB8FAPdA2EK116RJEyUnJ6t169auLsVjxMbGKioqSvPnz3d1KQDKwD4KAO6Ba7ZQ7a1YsUKSlJ+f79pCPEhmZqaOHDmiTZs2uboUAGVgHwUA98A1WwAAAABgAo5swevl5ORo+fLlSklJUVZWliQpPDxc3bt319ChQyt8X4fqpri4WBkZGXZjFh0dzY1TATfBPgoA7o8jW/BqaWlpio+PV2BgoOLi4hQWFiZJys7OVnJysgoKCpSUlKTOnTu7uFL3YbVaNXXqVC1atKjUBfbBwcEaOXKkZsyYIR8fLvkEXIF9FAA8B0e24NVGjRqlO++8U4sXL5bFYrFrMwxDDz/8sEaNGqWUlBQXVeh+Hn/8ca1YsULPPPOM4uPj7QLq5s2bNWXKFBUWFmrOnDkurhSonthHAcBzcGQLXi0gIEB79+4td6XBQ4cOqWPHjvr111+ruDL3FR4erpUrVyo+Pr7M9qSkJP3rX/9SdnZ2FVcGQGIfBQBPwjkG8Grh4eFKTU0ttz01NdX2V2H85uzZs4qMjCy3PSIiQufOnavCigBcin0UADwHR7bg1RYtWqTx48froYceUq9evUpds7Vs2TLNmzdPjzzyiIsrdR/9+vVTcXGxVq1apYYNG9q15eTk6N5775Wvr682bNjgogqB6o19FAA8B2ELXm/NmjVasGCB0tPTVVJSIkny9fVVp06dNG7cOA0cONDFFbqXY8eOqW/fvjp06JDatWtnF1APHDig6OhobdiwQY0bN3ZxpUD1xD4KAJ6DsIVqo6ioSDk5OZKkhg0bsjzyH7BarUpKStLu3bvtlpWOiYlR7969WeUMcDH2UQDwDIQtAAAAADABf/oCYLN//35ZrdYK98/IyFBxcbGJFQEAAHgujmwBsPH19VVWVpYaNWpUof5BQUHat2+foqKiTK4MAADA83BTYwA2hmFoypQpCgwMrFD/wsJCkysCAADwXIQtADY9evTQ4cOHK9w/JiZGAQEBJlYEAADguTiNENXejh071KFDBwUHB7u6FAAAAHgRFshAtRcbG6uoqCjNnz/f1aUAQKXo2bOnZs2apYKCAleXAgDVGmEL1V5mZqbWrl2r7OxsV5cCAJWiSZMmSk5OVuvWrV1dCgBUa5xGCACAl8rPz1dQUJCrywCAaouwhWopOztbFy5cUJMmTVxdCgBUCsMwZLFYXF0GAOASnEYIr3b27Fndc889atq0qYYMGaLCwkKNGDFCERERat68uW666Sbl5+e7ukwAuGx+fn46ePCgq8sAAFyCpd/h1f79738rPT1dEyZM0HvvvaeBAwfq+++/186dO1VSUqLhw4drzpw5euqpp1xdKgBUyLhx48rcXlJSomeeeUYNGjSQJD333HNVWRYAoAycRgiv1qRJE61cuVI333yzTpw4oSuvvFLr1q3TrbfeKknauHGjxo8fr0OHDrm4UgCoGB8fH3Xo0EEhISF22z/55BN17txZtWvXlsVi0datW11TIADAhrAFr+bv769vv/1WjRs3liTVrl1be/fuVcuWLSVJP/74o6Kjo3Xu3DlXlgkAFfbMM89o6dKlevXVV9WzZ0/b9po1a+rLL79UdHS0C6sDAFyKa7bg1Ro0aKBTp07ZHvfv39/ur8G//PKL/Pz8XFAZADjn8ccf15o1azR8+HBNmDBBRUVFri4JAFAOwha8Wvv27ZWWlmZ7vHr1aoWGhtoep6WlqU2bNq4oDQCcdv311ys9PV2nTp1S586d9dVXX7ESIQC4IU4jhFfLzc2Vj49PqWsbLtq0aZMCAgIUGxtbpXUBQGV5++23NWbMGJ06dUoHDhzgNEIAcCOELQAAPNxPP/2k9PR0xcXFqXbt2q4uBwDw/xG24LX279+vtm3bysenYmfLZmRkqFWrVqpRgzsiAAAA4PIRtuC1fH19lZWVpUaNGlWof1BQkPbt26eoqCiTKwMAAEB1wJ/w4bUMw9CUKVMUGBhYof6FhYUmVwQAAIDqhLAFr9WjRw8dPny4wv1jYmIUEBBgYkUAAACoTjiNEAAAAABMwH22AADwMjt27FBeXp6rywCAao+wBQCAl4mNjVVUVJTmz5/v6lIAoFojbAEA4GUyMzO1du1aZWdnu7oUAKjWuGYLAAAAAEzAkS0AALxAdna2jh496uoyAACXIGwBAOBBzp49q3vuuUdNmzbVkCFDVFhYqBEjRigiIkLNmzfXTTfdpPz8fFeXCQAQYQsAAI/y73//W+np6ZowYYKOHj2qgQMHaseOHdq5c6e2bdumnJwczZkzx9VlAgDENVsAAHiUJk2aaOXKlbr55pt14sQJXXnllVq3bp1uvfVWSdLGjRs1fvx4HTp0yMWVAgA4sgUAgAc5efKkrr76aklSZGSkAgIC1LJlS1t727ZtdezYMVeVBwC4BGELAAAP0qBBA506dcr2uH///goJCbE9/uWXX+Tn5+eCygAAv0fYAgDAg7Rv315paWm2x6tXr1ZoaKjtcVpamtq0aeOK0gAAv8M1WwAAeJDc3Fz5+PjYHc261KZNmxQQEKDY2NgqrQsAUBphCwAAAABMwGmEAAB4iP3798tqtVa4f0ZGhoqLi02sCADwRziyBQCAh/D19VVWVpYaNWpUof5BQUHat2+foqKiTK4MAFCWGq4uAAAAVIxhGJoyZYoCAwMr1L+wsNDkigAAf4SwBQCAh+jRo4cOHz5c4f4xMTEKCAgwsSIAwB/hNEIAAAAAMAELZAAAAACACQhbAAAAAGACwhYAAAAAmICwBQAAAAAmIGwBAAAAgAkIWwAAjzZ06FBZLBY988wzdts/+OADWSwW2+Pt27fLYrGU+ZWVlSVJmj59um2br6+vGjdurISEBOXm5pb7+s2aNSv3eS0Wi4YOHWrK+wYAuD/uswUA8Hj+/v6aM2eOHnroIdWrV+8P+x4+fFhBQUF220JDQ23/vuaaa/Txxx+rpKREBw8e1P3336+8vDytWbOmzOdLS0tTSUmJJGnXrl2644477F6D+1wBQPXFkS0AgMeLi4tTeHi4Zs+e/ad9Q0NDFR4ebvfl4/N/vw5r1Kih8PBwXXHFFYqLi9Odd96pLVu2lPt8jRo1sj1P/fr17V6jZs2aevjhh3XFFVcoMDBQ7dq101tvvWX3/WfPntXgwYNVu3ZtRUREaMGCBYqNjdWYMWOcGwwAgNsgbAEAPJ6vr6+efvppvfjii/rpp58q7Xl/+OEHJSUlqVatWk59//nz59WpUydt3LhRX331lRISEnTvvfcqNTXV1mfcuHH67LPPtG7dOm3ZskU7d+7UF198UVlvAQDgQpxGCADwCrfffruuvfZaTZs2Ta+99lq5/a688kq7x02bNlVGRobt8YEDB1SnTh2VlJTo/PnzkqTnnnvOqZquuOIKTZgwwfZ41KhRSkpK0jvvvKMuXbro7NmzWrlypVavXq1evXpJkl5//XVFRkY69XoAAPdC2AIAeI05c+aoZ8+edgHn93bu3Km6devaHtesWdOuvVWrVlq3bp3Onz+vN998U/v27dOoUaOcqqekpERPP/203nnnHR0/flyFhYW6cOGCAgMDJUlHjhxRUVGRunTpYvue4OBgtWrVyqnXAwC4F04jBAB4jR49eig+Pl6TJ08ut0/z5s119dVX276aNm1q116rVi1dffXVatu2rZ555hn5+vpqxowZTtXz7LPP6oUXXtCkSZO0bds27du3T/Hx8SosLHTq+QAAnoWwBQDwKs8884zWr1+vlJSUSnm+J554QvPmzdOJEycc/t7PPvtM/fv31z333KMOHTooKipK33zzja09KipKNWvWVFpamm1bXl6eXR8AgOcibAEAvEq7du00ePBgLVy4sMz2kydPKisry+6rqKio3OeLiYlR+/bt9fTTTztcS4sWLbRlyxbt2rVLBw8e1EMPPaTs7Gxbe926dTVkyBA99thj2rZtmzIyMjRs2DD5+PjY3SMMAOCZCFsAAK8zc+ZMWa3WMttatWqliIgIu6/09PQ/fL6xY8fq1Vdf1bFjxxyq44knntB1112n+Ph4xcbGKjw8XAMGDLDr89xzzykmJka33nqr4uLidMMNN6hNmzby9/d36LUAAO7HYhiG4eoiAADAb86dO6crrrhC8+fP17Bhw1xdDgDgMrAaIQAALrR3714dOnRIXbp0UV5enmbOnClJ6t+/v4srAwBcLsIWAAAuNm/ePB0+fFi1atVSp06dtHPnTjVs2NDVZQEALhOnEQIAAACACVggAwAAAABMQNgCAAAAABMQtgAAAADABIQtAAAAADABYQsAAAAATEDYAgAAAAATELYAAAAAwASELQAAAAAwAWELAAAAAEzw/wCDuNlgk2CGfgAAAABJRU5ErkJggg==\n"
},
"metadata": {}
}
]
},
{
"cell_type": "code",
"source": [
"def export_to_file(export_file_path, data):\n",
" with open(export_file_path, \"w\") as f:\n",
" for record in data:\n",
" ner_tags = record[\"ner_tags\"]\n",
" tokens = record[\"tokens\"]\n",
" if len(tokens) > 0:\n",
" f.write(\n",
" str(len(tokens))\n",
" + \"\\t\"\n",
" + \"\\t\".join(tokens)\n",
" + \"\\t\"\n",
" + \"\\t\".join(map(str, ner_tags))\n",
" + \"\\n\"\n",
" )\n",
"\n",
"\n",
"os.makedirs(\"data\", exist_ok=True)\n",
"export_to_file(\"./data/conll_train.txt\", conll_data[\"train\"])\n",
"export_to_file(\"./data/conll_val.txt\", conll_data[\"validation\"])"
],
"metadata": {
"id": "EQgmkV1fZRhI"
},
"execution_count": 9,
"outputs": []
},
{
"cell_type": "code",
"source": [
"def make_tag_lookup_table():\n",
" iob_labels = [\"B\", \"I\"]\n",
" ner_labels = [\"PER\", \"ORG\", \"LOC\", \"MISC\"]\n",
" all_labels = [(label1, label2) for label2 in ner_labels for label1 in iob_labels]\n",
" all_labels = [\"-\".join([a, b]) for a, b in all_labels]\n",
" all_labels = [\"[PAD]\", \"O\"] + all_labels\n",
" return dict(zip(range(0, len(all_labels) + 1), all_labels))\n",
"\n",
"\n",
"mapping = make_tag_lookup_table()\n",
"print(mapping)"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "OdufhIrEZRs2",
"outputId": "09e10fc1-6fdf-4281-ac81-973d32dad3a5"
},
"execution_count": 10,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"{0: '[PAD]', 1: 'O', 2: 'B-PER', 3: 'I-PER', 4: 'B-ORG', 5: 'I-ORG', 6: 'B-LOC', 7: 'I-LOC', 8: 'B-MISC', 9: 'I-MISC'}\n"
]
}
]
},
{
"cell_type": "code",
"source": [
"all_tokens = sum(conll_data[\"train\"][\"tokens\"], [])\n",
"all_tokens_array = np.array(list(map(str.lower, all_tokens)))\n",
"\n",
"counter = Counter(all_tokens_array)\n",
"print(len(counter))\n",
"\n",
"num_tags = len(mapping)\n",
"vocab_size = 20000\n",
"\n",
"# We only take (vocab_size - 2) most commons words from the training data since\n",
"# the `StringLookup` class uses 2 additional tokens - one denoting an unknown\n",
"# token and another one denoting a masking token\n",
"vocabulary = [token for token, count in counter.most_common(vocab_size - 2)]\n",
"\n",
"# The StringLook class will convert tokens to token IDs\n",
"lookup_layer = keras.layers.StringLookup(vocabulary=vocabulary)"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "a7T9RCZ3ZSKB",
"outputId": "c2dae2fc-b812-4d64-b3eb-23e2d38710c3"
},
"execution_count": 11,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"21009\n"
]
}
]
},
{
"cell_type": "code",
"source": [
"train_data = tf.data.TextLineDataset(\"./data/conll_train.txt\")\n",
"val_data = tf.data.TextLineDataset(\"./data/conll_val.txt\")"
],
"metadata": {
"id": "vdcDo5IJZfjl"
},
"execution_count": 12,
"outputs": []
},
{
"cell_type": "code",
"source": [
"print(list(train_data.take(1).as_numpy_iterator()))\n"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "8fXqLG3FZfmx",
"outputId": "42354174-a397-4b9e-eda0-4b1d5ed62665"
},
"execution_count": 13,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"[b'9\\tEU\\trejects\\tGerman\\tcall\\tto\\tboycott\\tBritish\\tlamb\\t.\\t3\\t0\\t7\\t0\\t0\\t0\\t7\\t0\\t0']\n"
]
}
]
},
{
"cell_type": "code",
"source": [
"def map_record_to_training_data(record):\n",
" record = tf.strings.split(record, sep=\"\\t\")\n",
" length = tf.strings.to_number(record[0], out_type=tf.int32)\n",
" tokens = record[1 : length + 1]\n",
" tags = record[length + 1 :]\n",
" tags = tf.strings.to_number(tags, out_type=tf.int64)\n",
" tags += 1\n",
" return tokens, tags\n",
"\n",
"\n",
"def lowercase_and_convert_to_ids(tokens):\n",
" tokens = tf.strings.lower(tokens)\n",
" return lookup_layer(tokens)\n",
"\n",
"\n",
"# We use `padded_batch` here because each record in the dataset has a\n",
"# different length.\n",
"batch_size = 32\n",
"train_dataset = (\n",
" train_data.map(map_record_to_training_data)\n",
" .map(lambda x, y: (lowercase_and_convert_to_ids(x), y))\n",
" .padded_batch(batch_size)\n",
")\n",
"val_dataset = (\n",
" val_data.map(map_record_to_training_data)\n",
" .map(lambda x, y: (lowercase_and_convert_to_ids(x), y))\n",
" .padded_batch(batch_size)\n",
")\n",
"\n",
"ner_model = NERModel(num_tags, vocab_size, embed_dim=32, num_heads=4, ff_dim=64)"
],
"metadata": {
"id": "jtt-G6ezZto5"
},
"execution_count": 14,
"outputs": []
},
{
"cell_type": "code",
"source": [
"class CustomNonPaddingTokenLoss(keras.losses.Loss):\n",
" def __init__(self, name=\"custom_ner_loss\"):\n",
" super().__init__(name=name)\n",
"\n",
" def call(self, y_true, y_pred):\n",
" loss_fn = keras.losses.SparseCategoricalCrossentropy(\n",
" from_logits=False, reduction= 'none'\n",
" )\n",
" loss = loss_fn(y_true, y_pred)\n",
" mask = tf.cast((y_true > 0), dtype=tf.float32)\n",
" loss = loss * mask\n",
" return tf.reduce_sum(loss) / tf.reduce_sum(mask)\n",
"\n",
"\n",
"loss = CustomNonPaddingTokenLoss()"
],
"metadata": {
"id": "uqCmpwqgZtrs"
},
"execution_count": 15,
"outputs": []
},
{
"cell_type": "code",
"source": [
"ner_model.compile(optimizer=\"adam\", loss=loss)\n",
"ner_model.fit(train_dataset, epochs=10)\n",
"\n",
"\n",
"def tokenize_and_convert_to_ids(text):\n",
" tokens = text.split()\n",
" return lowercase_and_convert_to_ids(tokens)\n",
"\n",
"\n",
"# Sample inference using the trained model\n",
"sample_input = tokenize_and_convert_to_ids(\n",
" \"eu rejects german call to boycott british lamb\"\n",
")\n",
"sample_input = tf.reshape(sample_input, shape=[1, -1])\n",
"print(sample_input)\n",
"\n",
"output = ner_model.predict(sample_input)\n",
"prediction = np.argmax(output, axis=-1)[0]\n",
"prediction = [mapping[i] for i in prediction]\n",
"\n",
"# eu -> B-ORG, german -> B-MISC, british -> B-MISC\n",
"print(prediction)\n"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "TQDGyN4gZtuC",
"outputId": "5b743bb3-2112-47b2-e4f7-0db45991f93d"
},
"execution_count": 16,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Epoch 1/10\n",
"439/439 [==============================] - 20s 38ms/step - loss: 0.6150\n",
"Epoch 2/10\n",
"439/439 [==============================] - 17s 38ms/step - loss: 0.2667\n",
"Epoch 3/10\n",
"439/439 [==============================] - 14s 33ms/step - loss: 0.1617\n",
"Epoch 4/10\n",
"439/439 [==============================] - 15s 33ms/step - loss: 0.1254\n",
"Epoch 5/10\n",
"439/439 [==============================] - 14s 33ms/step - loss: 0.1015\n",
"Epoch 6/10\n",
"439/439 [==============================] - 14s 32ms/step - loss: 0.0837\n",
"Epoch 7/10\n",
"439/439 [==============================] - 15s 35ms/step - loss: 0.0697\n",
"Epoch 8/10\n",
"439/439 [==============================] - 14s 32ms/step - loss: 0.0604\n",
"Epoch 9/10\n",
"439/439 [==============================] - 15s 33ms/step - loss: 0.0526\n",
"Epoch 10/10\n",
"439/439 [==============================] - 16s 35ms/step - loss: 0.0456\n",
"tf.Tensor([[ 988 10950 204 628 6 3938 215 5773]], shape=(1, 8), dtype=int64)\n",
"1/1 [==============================] - 0s 261ms/step\n",
"['B-ORG', 'O', 'B-MISC', 'O', 'O', 'O', 'B-MISC', 'O']\n"
]
}
]
},
{
"cell_type": "code",
"source": [
"def calculate_metrics(dataset):\n",
" all_true_tag_ids, all_predicted_tag_ids = [], []\n",
"\n",
" for x, y in dataset:\n",
" output = ner_model.predict(x, verbose=0)\n",
" predictions = np.argmax(output, axis=-1)\n",
" predictions = np.reshape(predictions, [-1])\n",
"\n",
" true_tag_ids = np.reshape(y, [-1])\n",
"\n",
" mask = (true_tag_ids > 0) & (predictions > 0)\n",
" true_tag_ids = true_tag_ids[mask]\n",
" predicted_tag_ids = predictions[mask]\n",
"\n",
" all_true_tag_ids.append(true_tag_ids)\n",
" all_predicted_tag_ids.append(predicted_tag_ids)\n",
"\n",
" all_true_tag_ids = np.concatenate(all_true_tag_ids)\n",
" all_predicted_tag_ids = np.concatenate(all_predicted_tag_ids)\n",
"\n",
" predicted_tags = [mapping[tag] for tag in all_predicted_tag_ids]\n",
" real_tags = [mapping[tag] for tag in all_true_tag_ids]\n",
"\n",
" evaluate(real_tags, predicted_tags)\n",
"\n",
"\n",
"calculate_metrics(val_dataset)"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "vPPszQFIcEKi",
"outputId": "22d8a103-b1d1-402b-b401-f5662fdaca00"
},
"execution_count": 17,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"processed 51362 tokens with 5942 phrases; found: 5194 phrases; correct: 3847.\n",
"accuracy: 62.20%; (non-O)\n",
"accuracy: 93.33%; precision: 74.07%; recall: 64.74%; FB1: 69.09\n",
" LOC: precision: 85.18%; recall: 79.48%; FB1: 82.23 1714\n",
" MISC: precision: 75.61%; recall: 63.88%; FB1: 69.25 779\n",
" ORG: precision: 63.88%; recall: 60.92%; FB1: 62.37 1279\n",
" PER: precision: 68.99%; recall: 53.26%; FB1: 60.11 1422\n"
]
}
]
},
{
"cell_type": "code",
"source": [
"def test_model_with_input(ner_model, mapping):\n",
" # Get input sentence from user\n",
" input_sentence = input(\"Enter a sentence: \")\n",
"\n",
" # Tokenize and convert input sentence to IDs\n",
" sample_input = tokenize_and_convert_to_ids(input_sentence)\n",
" sample_input = tf.reshape(sample_input, shape=[1, -1])\n",
"\n",
" # Predict tags using the trained model\n",
" output = ner_model.predict(sample_input)\n",
" predictions = np.argmax(output, axis=-1)[0]\n",
" predicted_tags = [mapping[i] for i in predictions]\n",
"\n",
" # Print the predicted tags for each token in the input sentence\n",
" print(\"Input sentence:\", input_sentence)\n",
" print(\"Predicted tags:\", predicted_tags)\n",
"\n",
"# Test the model with user input\n",
"test_model_with_input(ner_model, mapping)"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "BX6jui33cEiJ",
"outputId": "91207f20-c00e-46ab-ae91-9bc1dfc8d804"
},
"execution_count": 18,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Enter a sentence: My Name is Karishma. I live in Canada. Canada I am from India\n",
"1/1 [==============================] - 0s 20ms/step\n",
"Input sentence: My Name is Karishma. I live in Canada. Canada I am from India\n",
"Predicted tags: ['O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'B-LOC', 'O', 'O', 'O', 'B-LOC']\n"
]
}
]
},
{
"cell_type": "code",
"source": [
"logger = logging.getLogger(\"presidio-analyzer\")\n",
"\n",
"\n",
"class FlairRecognizer(EntityRecognizer):\n",
" \"\"\"\n",
" Wrapper for a flair model, if needed to be used within Presidio Analyzer.\n",
" :example:\n",
" >from presidio_analyzer import AnalyzerEngine, RecognizerRegistry\n",
" >flair_recognizer = FlairRecognizer()\n",
" >registry = RecognizerRegistry()\n",
" >registry.add_recognizer(flair_recognizer)\n",
" >analyzer = AnalyzerEngine(registry=registry)\n",
" >results = analyzer.analyze(\n",
" > \"My name is Christopher and I live in Irbid.\",\n",
" > language=\"en\",\n",
" > return_decision_process=True,\n",
" >)\n",
" >for result in results:\n",
" > print(result)\n",
" > print(result.analysis_explanation)\n",
" \"\"\"\n",
"\n",
" ENTITIES = [\n",
" \"LOCATION\",\n",
" \"PERSON\",\n",
" \"ORGANIZATION\",\n",
" # \"MISCELLANEOUS\" # - There are no direct correlation with Presidio entities.\n",
" ]\n",
"\n",
" DEFAULT_EXPLANATION = \"Identified as {} by Flair's Named Entity Recognition\"\n",
"\n",
" CHECK_LABEL_GROUPS = [\n",
" ({\"LOCATION\"}, {\"LOC\", \"LOCATION\"}),\n",
" ({\"PERSON\"}, {\"PER\", \"PERSON\"}),\n",
" ({\"ORGANIZATION\"}, {\"ORG\"}),\n",
" # ({\"MISCELLANEOUS\"}, {\"MISC\"}), # Probably not PII\n",
" ]\n",
"\n",
" MODEL_LANGUAGES = {\"en\": \"flair/ner-english-large\"}\n",
"\n",
" PRESIDIO_EQUIVALENCES = {\n",
" \"PER\": \"PERSON\",\n",
" \"LOC\": \"LOCATION\",\n",
" \"ORG\": \"ORGANIZATION\",\n",
" # 'MISC': 'MISCELLANEOUS' # - Probably not PII\n",
" }\n",
"\n",
" def __init__(\n",
" self,\n",
" supported_language: str = \"en\",\n",
" supported_entities: Optional[List[str]] = None,\n",
" check_label_groups: Optional[Tuple[Set, Set]] = None,\n",
" model: SequenceTagger = None,\n",
" model_path: Optional[str] = None,\n",
" ):\n",
" self.check_label_groups = (\n",
" check_label_groups if check_label_groups else self.CHECK_LABEL_GROUPS\n",
" )\n",
"\n",
" supported_entities = supported_entities if supported_entities else self.ENTITIES\n",
"\n",
" if model and model_path:\n",
" raise ValueError(\"Only one of model or model_path should be provided.\")\n",
" elif model and not model_path:\n",
" self.model = model\n",
" elif not model and model_path:\n",
" print(f\"Loading model from {model_path}\")\n",
" self.model = SequenceTagger.load(model_path)\n",
" else:\n",
" print(f\"Loading model for language {supported_language}\")\n",
" self.model = SequenceTagger.load(\n",
" self.MODEL_LANGUAGES.get(supported_language)\n",
" )\n",
"\n",
" super().__init__(\n",
" supported_entities=supported_entities,\n",
" supported_language=supported_language,\n",
" name=\"Flair Analytics\",\n",
" )\n",
"\n",
" def load(self) -> None:\n",
" \"\"\"Load the model, not used. Model is loaded during initialization.\"\"\"\n",
" pass\n",
"\n",
" def get_supported_entities(self) -> List[str]:\n",
" \"\"\"\n",
" Return supported entities by this model.\n",
" :return: List of the supported entities.\n",
" \"\"\"\n",
" return self.supported_entities\n",
"\n",
" # Class to use Flair with Presidio as an external recognizer.\n",
" def analyze(\n",
" self, text: str, entities: List[str], nlp_artifacts: NlpArtifacts = None\n",
" ) -> List[RecognizerResult]:\n",
" \"\"\"\n",
" Analyze text using Text Analytics.\n",
" :param text: The text for analysis.\n",
" :param entities: Not working properly for this recognizer.\n",
" :param nlp_artifacts: Not used by this recognizer.\n",
" :param language: Text language. Supported languages in MODEL_LANGUAGES\n",
" :return: The list of Presidio RecognizerResult constructed from the recognized\n",
" Flair detections.\n",
" \"\"\"\n",
"\n",
" results = []\n",
"\n",
" sentences = Sentence(text)\n",
" self.model.predict(sentences)\n",
"\n",
" # If there are no specific list of entities, we will look for all of it.\n",
" if not entities:\n",
" entities = self.supported_entities\n",
"\n",
" for entity in entities:\n",
" if entity not in self.supported_entities:\n",
" continue\n",
"\n",
" for ent in sentences.get_spans(\"ner\"):\n",
" if not self.__check_label(\n",
" entity, ent.labels[0].value, self.check_label_groups\n",
" ):\n",
" continue\n",
" textual_explanation = self.DEFAULT_EXPLANATION.format(\n",
" ent.labels[0].value\n",
" )\n",
" explanation = self.build_flair_explanation(\n",
" round(ent.score, 2), textual_explanation\n",
" )\n",
" flair_result = self._convert_to_recognizer_result(ent, explanation)\n",
"\n",
" results.append(flair_result)\n",
"\n",
" return results\n",
"\n",
" def _convert_to_recognizer_result(self, entity, explanation) -> RecognizerResult:\n",
" entity_type = self.PRESIDIO_EQUIVALENCES.get(entity.tag, entity.tag)\n",
" flair_score = round(entity.score, 2)\n",
"\n",
" flair_results = RecognizerResult(\n",
" entity_type=entity_type,\n",
" start=entity.start_position,\n",
" end=entity.end_position,\n",
" score=flair_score,\n",
" analysis_explanation=explanation,\n",
" )\n",
"\n",
" return flair_results\n",
"\n",
" def build_flair_explanation(\n",
" self, original_score: float, explanation: str\n",
" ) -> AnalysisExplanation:\n",
" \"\"\"\n",
" Create explanation for why this result was detected.\n",
" :param original_score: Score given by this recognizer\n",
" :param explanation: Explanation string\n",
" :return:\n",
" \"\"\"\n",
" explanation = AnalysisExplanation(\n",
" recognizer=self.__class__.__name__,\n",
" original_score=original_score,\n",
" textual_explanation=explanation,\n",
" )\n",
" return explanation\n",
"\n",
" @staticmethod\n",
" def __check_label(\n",
" entity: str, label: str, check_label_groups: Tuple[Set, Set]\n",
" ) -> bool:\n",
" return any(\n",
" [entity in egrp and label in lgrp for egrp, lgrp in check_label_groups]\n",
" )"
],
"metadata": {
"id": "OWwGi143lCVF"
},
"execution_count": 20,
"outputs": []
},
{
"cell_type": "code",
"source": [
"from transformers import AutoModel, AutoTokenizer\n",
"\n",
"\n",
"if __name__ == \"__main__\":\n",
" from flair.data import Sentence\n",
" from flair.models import SequenceTagger\n",
"\n",
" # load tagger\n",
" tagger = SequenceTagger.load(\"flair/ner-english-large\")\n",
"\n",
" # make example sentence\n",
" sentence = Sentence(\"My name is Karishma Shirsath. I live in Toronto Canada.\")\n",
"\n",
" # predict NER tags\n",
" tagger.predict(sentence)\n",
"\n",
" # print sentence\n",
" print(sentence)\n",
"\n",
" # print predicted NER spans\n",
" print(\"The following NER tags are found:\")\n",
" # iterate over entities and print\n",
" for entity in sentence.get_spans(\"ner\"):\n",
" print(entity)\n",
"\n"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "LT92Kk44lgAV",
"outputId": "0fc28bdc-4a3a-4e68-8617-27cdcedbc3ce"
},
"execution_count": 21,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"2024-03-16 05:24:49,993 SequenceTagger predicts: Dictionary with 20 tags: <unk>, O, S-ORG, S-MISC, B-PER, E-PER, S-LOC, B-ORG, E-ORG, I-PER, S-PER, B-MISC, I-MISC, E-MISC, I-ORG, B-LOC, E-LOC, I-LOC, <START>, <STOP>\n",
"Sentence[12]: \"My name is Karishma Shirsath. I live in Toronto Canada.\" β [\"Karishma Shirsath\"/PER, \"Toronto\"/LOC, \"Canada\"/LOC]\n",
"The following NER tags are found:\n",
"Span[3:5]: \"Karishma Shirsath\" β PER (1.0)\n",
"Span[9:10]: \"Toronto\" β LOC (1.0)\n",
"Span[10:11]: \"Canada\" β LOC (1.0)\n"
]
}
]
},
{
"cell_type": "code",
"source": [
"if __name__ == \"__main__\":\n",
" from flair.data import Sentence\n",
" from flair.models import SequenceTagger\n",
"\n",
" # load tagger\n",
" tagger = SequenceTagger.load(\"flair/ner-english-large\")\n",
"\n",
" # make example sentence\n",
" sentence = Sentence(\"My name is Karishma Shirsath. I live in Toronto Canada.\")\n",
"\n",
" # predict NER tags\n",
" tagger.predict(sentence)\n",
"\n",
" # print sentence\n",
" print(sentence)\n",
"\n",
" # Anonymize identified named entities\n",
" anonymized_sentence = str(sentence)\n",
" for entity in sentence.get_spans(\"ner\"):\n",
" entity_text = entity.text\n",
" anonymized_text = \"*\" * len(entity_text)\n",
" anonymized_sentence = anonymized_sentence.replace(entity_text, anonymized_text)\n",
"\n",
" # print anonymized sentence\n",
" print(\"Anonymized sentence:\")\n",
" print(anonymized_sentence)\n",
"\n"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "lgYJJVilwbVF",
"outputId": "20e52cfd-0e6e-4906-bcb0-3c403160293d"
},
"execution_count": 33,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"2024-03-16 05:39:00,757 SequenceTagger predicts: Dictionary with 20 tags: <unk>, O, S-ORG, S-MISC, B-PER, E-PER, S-LOC, B-ORG, E-ORG, I-PER, S-PER, B-MISC, I-MISC, E-MISC, I-ORG, B-LOC, E-LOC, I-LOC, <START>, <STOP>\n",
"Sentence[12]: \"My name is Karishma Shirsath. I live in Toronto Canada.\" β [\"Karishma Shirsath\"/PER, \"Toronto\"/LOC, \"Canada\"/LOC]\n",
"Anonymized sentence:\n",
"Sentence[12]: \"My name is *****************. I live in ******* ******.\" β [\"*****************\"/PER, \"*******\"/LOC, \"******\"/LOC]\n"
]
}
]
}
]
} |