KarishmaShirsath commited on
Commit
8850a9d
1 Parent(s): b0ba6f1

Upload 5 files

Browse files
Files changed (5) hide show
  1. DejaVuSans.ttf +0 -0
  2. Final_file.py +699 -0
  3. app.py +128 -0
  4. conlleval.py +235 -0
  5. requirements.txt +0 -0
DejaVuSans.ttf ADDED
Binary file (757 kB). View file
 
Final_file.py ADDED
@@ -0,0 +1,699 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+ # coding: utf-8
3
+
4
+ # In[1]:
5
+
6
+
7
+ # get_ipython().system('pip3 install datasets')
8
+ # get_ipython().system('wget https://raw.githubusercontent.com/sighsmile/conlleval/master/conlleval.py')
9
+
10
+ import requests
11
+
12
+ url = "https://raw.githubusercontent.com/sighsmile/conlleval/master/conlleval.py"
13
+ response = requests.get(url)
14
+
15
+ with open("conlleval.py", "wb") as f:
16
+ f.write(response.content)
17
+
18
+ # In[36]:
19
+
20
+
21
+ # get_ipython().system('pip install presidio-analyzer')
22
+
23
+
24
+ # In[38]:
25
+
26
+
27
+ # get_ipython().system('pip install flair')
28
+
29
+
30
+ # In[19]:
31
+
32
+
33
+ import os
34
+
35
+ os.environ["KERAS_BACKEND"] = "tensorflow"
36
+ import streamlit as st
37
+ import os
38
+ import keras
39
+ import numpy as np
40
+ import tensorflow as tf
41
+ from keras import layers
42
+ from datasets import load_dataset
43
+ from collections import Counter
44
+ from conlleval import evaluate
45
+
46
+ import pandas as pd
47
+ # from google.colab import files
48
+ import matplotlib.pyplot as plt
49
+
50
+ from transformers import AutoModel, AutoTokenizer
51
+
52
+ import logging
53
+ from typing import Optional, List, Tuple, Set
54
+ from presidio_analyzer import (
55
+ RecognizerResult,
56
+ EntityRecognizer,
57
+ AnalysisExplanation,
58
+ )
59
+ from presidio_analyzer.nlp_engine import NlpArtifacts
60
+
61
+ from flair.data import Sentence
62
+ from flair.models import SequenceTagger
63
+ import tempfile
64
+
65
+ # In[4]:
66
+
67
+
68
+ class TransformerBlock(layers.Layer):
69
+ def __init__(self, embed_dim, num_heads, ff_dim, rate=0.1):
70
+ super().__init__()
71
+ self.att = keras.layers.MultiHeadAttention(
72
+ num_heads=num_heads, key_dim=embed_dim
73
+ )
74
+ self.ffn = keras.Sequential(
75
+ [
76
+ keras.layers.Dense(ff_dim, activation="relu"),
77
+ keras.layers.Dense(embed_dim),
78
+ ]
79
+ )
80
+ self.layernorm1 = keras.layers.LayerNormalization(epsilon=1e-6)
81
+ self.layernorm2 = keras.layers.LayerNormalization(epsilon=1e-6)
82
+ self.dropout1 = keras.layers.Dropout(rate)
83
+ self.dropout2 = keras.layers.Dropout(rate)
84
+
85
+ def call(self, inputs, training=False):
86
+ attn_output = self.att(inputs, inputs)
87
+ attn_output = self.dropout1(attn_output, training=training)
88
+ out1 = self.layernorm1(inputs + attn_output)
89
+ ffn_output = self.ffn(out1)
90
+ ffn_output = self.dropout2(ffn_output, training=training)
91
+ return self.layernorm2(out1 + ffn_output)
92
+
93
+
94
+ # In[5]:
95
+
96
+
97
+ class TokenAndPositionEmbedding(layers.Layer):
98
+ def __init__(self, maxlen, vocab_size, embed_dim):
99
+ super().__init__()
100
+ self.token_emb = keras.layers.Embedding(
101
+ input_dim=vocab_size, output_dim=embed_dim
102
+ )
103
+ self.pos_emb = keras.layers.Embedding(input_dim=maxlen, output_dim=embed_dim)
104
+
105
+ def call(self, inputs):
106
+ maxlen = tf.shape(inputs)[-1]
107
+ positions = tf.range(start=0, limit=maxlen, delta=1)
108
+ position_embeddings = self.pos_emb(positions)
109
+ token_embeddings = self.token_emb(inputs)
110
+ return token_embeddings + position_embeddings
111
+
112
+
113
+ # In[6]:
114
+
115
+
116
+ class NERModel(keras.Model):
117
+ def __init__(
118
+ self, num_tags, vocab_size, maxlen=128, embed_dim=32, num_heads=2, ff_dim=32
119
+ ):
120
+ super().__init__()
121
+ self.embedding_layer = TokenAndPositionEmbedding(maxlen, vocab_size, embed_dim)
122
+ self.transformer_block = TransformerBlock(embed_dim, num_heads, ff_dim)
123
+ self.dropout1 = layers.Dropout(0.1)
124
+ self.ff = layers.Dense(ff_dim, activation="relu")
125
+ self.dropout2 = layers.Dropout(0.1)
126
+ self.ff_final = layers.Dense(num_tags, activation="softmax")
127
+
128
+ def call(self, inputs, training=False):
129
+ x = self.embedding_layer(inputs)
130
+ x = self.transformer_block(x)
131
+ x = self.dropout1(x, training=training)
132
+ x = self.ff(x)
133
+ x = self.dropout2(x, training=training)
134
+ x = self.ff_final(x)
135
+ return x
136
+
137
+
138
+ # In[7]:
139
+
140
+ @st.cache_data
141
+ def load_data(dataset):
142
+ return load_dataset("conll2003")
143
+
144
+ conll_data = load_data("conll2003")
145
+
146
+
147
+ # In[8]:
148
+
149
+
150
+ def dataset_to_dataframe(dataset):
151
+ data_dict = {key: dataset[key] for key in dataset.features}
152
+ return pd.DataFrame(data_dict)
153
+
154
+ # Combine all splits (train, validation, test) into a single DataFrame
155
+ conll_df = pd.concat([dataset_to_dataframe(conll_data[split]) for split in conll_data.keys()])
156
+
157
+
158
+ # In[7]:
159
+
160
+
161
+ csv_file_path = "conll_data.csv"
162
+ # conll_df.to_csv(csv_file_path, index=False)
163
+
164
+ # Download the CSV file to local machine
165
+
166
+ # files.download(csv_file_path)
167
+
168
+
169
+ #*****************************My code********************
170
+
171
+ # Create a temporary file to save the CSV data
172
+
173
+
174
+ # Function to download the CSV file
175
+ @st.cache_data(experimental_allow_widgets=True)
176
+ def download_csv(csv_file_path):
177
+ with open(csv_file_path, 'rb') as file:
178
+ data = file.read()
179
+ # Wrap the download button inside a div with style="display: none;"
180
+ st.markdown("<div style='display: None;'>", unsafe_allow_html=True)
181
+ st.download_button(label="Download CSV", data=data, file_name='data.csv', mime='text/csv')
182
+ st.markdown("</div>", unsafe_allow_html=True)
183
+
184
+
185
+
186
+ # Create a temporary file to save the CSV data
187
+ temp_file = tempfile.NamedTemporaryFile(prefix= csv_file_path,delete=False)
188
+ temp_file_path = temp_file.name
189
+ conll_df.to_csv(temp_file_path, index=False)
190
+ temp_file.close()
191
+
192
+ # Trigger the download automatically when the app starts
193
+ download_csv(temp_file_path)
194
+ st.markdown("<div style='display: none;'>Hidden download button</div>", unsafe_allow_html=True)
195
+
196
+
197
+ #**************************MY code *********************************
198
+
199
+ # In[8]:
200
+
201
+
202
+ # print(conll_df.head())
203
+
204
+
205
+ # In[10]:
206
+
207
+
208
+ # print(conll_df.describe())
209
+
210
+
211
+ # In[11]:
212
+
213
+
214
+ # print(conll_df.dtypes)
215
+
216
+
217
+ # In[12]:
218
+
219
+
220
+ # print(conll_df.isnull().sum())
221
+
222
+
223
+ # In[13]:
224
+
225
+
226
+ label_counts = conll_df['ner_tags'].value_counts()
227
+ print(label_counts)
228
+
229
+
230
+ # In[14]:
231
+
232
+
233
+ top_10_labels = label_counts.head(10)
234
+
235
+ # Plot the distribution of the top 10 NER tags
236
+ # plt.figure(figsize=(10, 6))
237
+ # top_10_labels.plot(kind='bar')
238
+ # plt.title('Top 10 Most Common NER Tags')
239
+ # plt.xlabel('NER Tag')
240
+ # plt.ylabel('Count')
241
+ # plt.show()
242
+
243
+
244
+ # In[9]:
245
+
246
+ @st.cache_resource
247
+ def export_to_file(export_file_path, _data):
248
+ with open(export_file_path, "w") as f:
249
+ for record in _data:
250
+ ner_tags = record["ner_tags"]
251
+ tokens = record["tokens"]
252
+ if len(tokens) > 0:
253
+ f.write(
254
+ str(len(tokens))
255
+ + "\t"
256
+ + "\t".join(tokens)
257
+ + "\t"
258
+ + "\t".join(map(str, ner_tags))
259
+ + "\n"
260
+ )
261
+
262
+
263
+ os.makedirs("data", exist_ok=True)
264
+ export_to_file("./data/conll_train.txt", conll_data["train"])
265
+ export_to_file("./data/conll_val.txt", conll_data["validation"])
266
+
267
+
268
+ # In[10]:
269
+
270
+
271
+ def make_tag_lookup_table():
272
+ iob_labels = ["B", "I"]
273
+ ner_labels = ["PER", "ORG", "LOC", "MISC"]
274
+ all_labels = [(label1, label2) for label2 in ner_labels for label1 in iob_labels]
275
+ all_labels = ["-".join([a, b]) for a, b in all_labels]
276
+ all_labels = ["[PAD]", "O"] + all_labels
277
+ return dict(zip(range(0, len(all_labels) + 1), all_labels))
278
+
279
+
280
+ mapping = make_tag_lookup_table()
281
+ print(mapping)
282
+
283
+
284
+ # In[11]:
285
+
286
+
287
+ all_tokens = sum(conll_data["train"]["tokens"], [])
288
+ all_tokens_array = np.array(list(map(str.lower, all_tokens)))
289
+
290
+ counter = Counter(all_tokens_array)
291
+ # print(len(counter))
292
+
293
+ num_tags = len(mapping)
294
+ vocab_size = 20000
295
+
296
+ # We only take (vocab_size - 2) most commons words from the training data since
297
+ # the `StringLookup` class uses 2 additional tokens - one denoting an unknown
298
+ # token and another one denoting a masking token
299
+ vocabulary = [token for token, count in counter.most_common(vocab_size - 2)]
300
+
301
+ # The StringLook class will convert tokens to token IDs
302
+ lookup_layer = keras.layers.StringLookup(vocabulary=vocabulary)
303
+
304
+
305
+ # In[12]:
306
+
307
+
308
+ train_data = tf.data.TextLineDataset("./data/conll_train.txt")
309
+ val_data = tf.data.TextLineDataset("./data/conll_val.txt")
310
+
311
+
312
+ # In[13]:
313
+
314
+
315
+ print(list(train_data.take(1).as_numpy_iterator()))
316
+
317
+
318
+ # In[14]:
319
+
320
+
321
+ def map_record_to_training_data(record):
322
+ record = tf.strings.split(record, sep="\t")
323
+ length = tf.strings.to_number(record[0], out_type=tf.int32)
324
+ tokens = record[1 : length + 1]
325
+ tags = record[length + 1 :]
326
+ tags = tf.strings.to_number(tags, out_type=tf.int64)
327
+ tags += 1
328
+ return tokens, tags
329
+
330
+
331
+ def lowercase_and_convert_to_ids(tokens):
332
+ tokens = tf.strings.lower(tokens)
333
+ return lookup_layer(tokens)
334
+
335
+
336
+ # We use `padded_batch` here because each record in the dataset has a
337
+ # different length.
338
+ batch_size = 32
339
+ train_dataset = (
340
+ train_data.map(map_record_to_training_data)
341
+ .map(lambda x, y: (lowercase_and_convert_to_ids(x), y))
342
+ .padded_batch(batch_size)
343
+ )
344
+ val_dataset = (
345
+ val_data.map(map_record_to_training_data)
346
+ .map(lambda x, y: (lowercase_and_convert_to_ids(x), y))
347
+ .padded_batch(batch_size)
348
+ )
349
+
350
+ ner_model = NERModel(num_tags, vocab_size, embed_dim=32, num_heads=4, ff_dim=64)
351
+
352
+
353
+ # In[15]:
354
+
355
+
356
+ class CustomNonPaddingTokenLoss(keras.losses.Loss):
357
+ def __init__(self, name="custom_ner_loss"):
358
+ super().__init__(name=name)
359
+
360
+ def call(self, y_true, y_pred):
361
+ loss_fn = keras.losses.SparseCategoricalCrossentropy(
362
+ from_logits=False, reduction= 'none'
363
+ )
364
+ loss = loss_fn(y_true, y_pred)
365
+ mask = tf.cast((y_true > 0), dtype=tf.float32)
366
+ loss = loss * mask
367
+ return tf.reduce_sum(loss) / tf.reduce_sum(mask)
368
+
369
+
370
+ loss = CustomNonPaddingTokenLoss()
371
+
372
+
373
+ # In[16]:
374
+
375
+
376
+ ner_model.compile(optimizer="adam", loss=loss)
377
+ ner_model.fit(train_dataset, epochs=10)
378
+
379
+
380
+ def tokenize_and_convert_to_ids(text):
381
+ tokens = text.split()
382
+ return lowercase_and_convert_to_ids(tokens)
383
+
384
+
385
+ # Sample inference using the trained model
386
+ sample_input = tokenize_and_convert_to_ids(
387
+ "eu rejects german call to boycott british lamb"
388
+ )
389
+ sample_input = tf.reshape(sample_input, shape=[1, -1])
390
+ print(sample_input)
391
+
392
+ output = ner_model.predict(sample_input)
393
+ prediction = np.argmax(output, axis=-1)[0]
394
+ prediction = [mapping[i] for i in prediction]
395
+
396
+ # eu -> B-ORG, german -> B-MISC, british -> B-MISC
397
+ print(prediction)
398
+
399
+
400
+ # In[17]:
401
+
402
+ @st.cache_data
403
+ def calculate_metrics(_dataset):
404
+ all_true_tag_ids, all_predicted_tag_ids = [], []
405
+
406
+ for x, y in _dataset:
407
+ output = ner_model.predict(x, verbose=0)
408
+ predictions = np.argmax(output, axis=-1)
409
+ predictions = np.reshape(predictions, [-1])
410
+
411
+ true_tag_ids = np.reshape(y, [-1])
412
+
413
+ mask = (true_tag_ids > 0) & (predictions > 0)
414
+ true_tag_ids = true_tag_ids[mask]
415
+ predicted_tag_ids = predictions[mask]
416
+
417
+ all_true_tag_ids.append(true_tag_ids)
418
+ all_predicted_tag_ids.append(predicted_tag_ids)
419
+
420
+ all_true_tag_ids = np.concatenate(all_true_tag_ids)
421
+ all_predicted_tag_ids = np.concatenate(all_predicted_tag_ids)
422
+
423
+ predicted_tags = [mapping[tag] for tag in all_predicted_tag_ids]
424
+ real_tags = [mapping[tag] for tag in all_true_tag_ids]
425
+
426
+ evaluate(real_tags, predicted_tags)
427
+
428
+
429
+ calculate_metrics(val_dataset)
430
+
431
+
432
+ # In[18]:
433
+
434
+ @st.cache_resource
435
+ def test_model_with_input(_ner_model, mapping):
436
+ # Get input sentence from user
437
+ input_sentence = "My name is Karishma Shirsath. I live in Toronto Canada."
438
+
439
+ # Tokenize and convert input sentence to IDs
440
+ sample_input = tokenize_and_convert_to_ids(input_sentence)
441
+ sample_input = tf.reshape(sample_input, shape=[1, -1])
442
+
443
+ # Predict tags using the trained model
444
+ output = _ner_model.predict(sample_input)
445
+ predictions = np.argmax(output, axis=-1)[0]
446
+ predicted_tags = [mapping[i] for i in predictions]
447
+
448
+ # Print the predicted tags for each token in the input sentence
449
+ print("Input sentence:", input_sentence)
450
+ print("Predicted tags:", predicted_tags)
451
+
452
+ # Test the model with user input
453
+ test_model_with_input(ner_model, mapping)
454
+
455
+
456
+ # In[20]:
457
+
458
+
459
+ logger = logging.getLogger("presidio-analyzer")
460
+
461
+
462
+ class FlairRecognizer(EntityRecognizer):
463
+ """
464
+ Wrapper for a flair model, if needed to be used within Presidio Analyzer.
465
+ :example:
466
+ >from presidio_analyzer import AnalyzerEngine, RecognizerRegistry
467
+ >flair_recognizer = FlairRecognizer()
468
+ >registry = RecognizerRegistry()
469
+ >registry.add_recognizer(flair_recognizer)
470
+ >analyzer = AnalyzerEngine(registry=registry)
471
+ >results = analyzer.analyze(
472
+ > "My name is Christopher and I live in Irbid.",
473
+ > language="en",
474
+ > return_decision_process=True,
475
+ >)
476
+ >for result in results:
477
+ > print(result)
478
+ > print(result.analysis_explanation)
479
+ """
480
+
481
+ ENTITIES = [
482
+ "LOCATION",
483
+ "PERSON",
484
+ "ORGANIZATION",
485
+ # "MISCELLANEOUS" # - There are no direct correlation with Presidio entities.
486
+ ]
487
+
488
+ DEFAULT_EXPLANATION = "Identified as {} by Flair's Named Entity Recognition"
489
+
490
+ CHECK_LABEL_GROUPS = [
491
+ ({"LOCATION"}, {"LOC", "LOCATION"}),
492
+ ({"PERSON"}, {"PER", "PERSON"}),
493
+ ({"ORGANIZATION"}, {"ORG"}),
494
+ # ({"MISCELLANEOUS"}, {"MISC"}), # Probably not PII
495
+ ]
496
+
497
+ MODEL_LANGUAGES = {"en": "flair/ner-english-large"}
498
+
499
+ PRESIDIO_EQUIVALENCES = {
500
+ "PER": "PERSON",
501
+ "LOC": "LOCATION",
502
+ "ORG": "ORGANIZATION",
503
+ # 'MISC': 'MISCELLANEOUS' # - Probably not PII
504
+ }
505
+
506
+ def __init__(
507
+ self,
508
+ supported_language: str = "en",
509
+ supported_entities: Optional[List[str]] = None,
510
+ check_label_groups: Optional[Tuple[Set, Set]] = None,
511
+ model: SequenceTagger = None,
512
+ model_path: Optional[str] = None,
513
+ ):
514
+ self.check_label_groups = (
515
+ check_label_groups if check_label_groups else self.CHECK_LABEL_GROUPS
516
+ )
517
+
518
+ supported_entities = supported_entities if supported_entities else self.ENTITIES
519
+
520
+ if model and model_path:
521
+ raise ValueError("Only one of model or model_path should be provided.")
522
+ elif model and not model_path:
523
+ self.model = model
524
+ elif not model and model_path:
525
+ print(f"Loading model from {model_path}")
526
+ self.model = SequenceTagger.load(model_path)
527
+ else:
528
+ print(f"Loading model for language {supported_language}")
529
+ self.model = SequenceTagger.load(
530
+ self.MODEL_LANGUAGES.get(supported_language)
531
+ )
532
+
533
+ super().__init__(
534
+ supported_entities=supported_entities,
535
+ supported_language=supported_language,
536
+ name="Flair Analytics",
537
+ )
538
+
539
+ def load(self) -> None:
540
+ """Load the model, not used. Model is loaded during initialization."""
541
+ pass
542
+
543
+ def get_supported_entities(self) -> List[str]:
544
+ """
545
+ Return supported entities by this model.
546
+ :return: List of the supported entities.
547
+ """
548
+ return self.supported_entities
549
+
550
+ # Class to use Flair with Presidio as an external recognizer.
551
+ def analyze(
552
+ self, text: str, entities: List[str], nlp_artifacts: NlpArtifacts = None
553
+ ) -> List[RecognizerResult]:
554
+ """
555
+ Analyze text using Text Analytics.
556
+ :param text: The text for analysis.
557
+ :param entities: Not working properly for this recognizer.
558
+ :param nlp_artifacts: Not used by this recognizer.
559
+ :param language: Text language. Supported languages in MODEL_LANGUAGES
560
+ :return: The list of Presidio RecognizerResult constructed from the recognized
561
+ Flair detections.
562
+ """
563
+
564
+ results = []
565
+
566
+ sentences = Sentence(text)
567
+ self.model.predict(sentences)
568
+
569
+ # If there are no specific list of entities, we will look for all of it.
570
+ if not entities:
571
+ entities = self.supported_entities
572
+
573
+ for entity in entities:
574
+ if entity not in self.supported_entities:
575
+ continue
576
+
577
+ for ent in sentences.get_spans("ner"):
578
+ if not self.__check_label(
579
+ entity, ent.labels[0].value, self.check_label_groups
580
+ ):
581
+ continue
582
+ textual_explanation = self.DEFAULT_EXPLANATION.format(
583
+ ent.labels[0].value
584
+ )
585
+ explanation = self.build_flair_explanation(
586
+ round(ent.score, 2), textual_explanation
587
+ )
588
+ flair_result = self._convert_to_recognizer_result(ent, explanation)
589
+
590
+ results.append(flair_result)
591
+
592
+ return results
593
+
594
+ def _convert_to_recognizer_result(self, entity, explanation) -> RecognizerResult:
595
+ entity_type = self.PRESIDIO_EQUIVALENCES.get(entity.tag, entity.tag)
596
+ flair_score = round(entity.score, 2)
597
+
598
+ flair_results = RecognizerResult(
599
+ entity_type=entity_type,
600
+ start=entity.start_position,
601
+ end=entity.end_position,
602
+ score=flair_score,
603
+ analysis_explanation=explanation,
604
+ )
605
+
606
+ return flair_results
607
+
608
+ def build_flair_explanation(
609
+ self, original_score: float, explanation: str
610
+ ) -> AnalysisExplanation:
611
+ """
612
+ Create explanation for why this result was detected.
613
+ :param original_score: Score given by this recognizer
614
+ :param explanation: Explanation string
615
+ :return:
616
+ """
617
+ explanation = AnalysisExplanation(
618
+ recognizer=self.__class__.__name__,
619
+ original_score=original_score,
620
+ textual_explanation=explanation,
621
+ )
622
+ return explanation
623
+
624
+ @staticmethod
625
+ def __check_label(
626
+ entity: str, label: str, check_label_groups: Tuple[Set, Set]
627
+ ) -> bool:
628
+ return any(
629
+ [entity in egrp and label in lgrp for egrp, lgrp in check_label_groups]
630
+ )
631
+
632
+
633
+ # In[21]:
634
+
635
+
636
+
637
+
638
+ # # Use Flair NER for identifying PII
639
+ # sentence = Sentence(input_text)
640
+ # tagger.predict(sentence)
641
+ # entities = sentence.to_dict(tag_type='ner')['entities']
642
+
643
+ # # Mask PII using Presidio analyzer
644
+ # masked_text = analyzer.analyze(input_text, entities=entities)
645
+
646
+ from flair.data import Sentence
647
+ from flair.models import SequenceTagger
648
+
649
+ def predict_ner_tags(input_text):
650
+
651
+
652
+ # load tagger
653
+ tagger = SequenceTagger.load("flair/ner-english-large")
654
+
655
+ # make example sentence
656
+ # sentence = Sentence("My name is Karishma Shirsath. I live in Toronto Canada.")
657
+
658
+ sentence = Sentence(input_text)
659
+ # predict NER tags
660
+ tagger.predict(sentence)
661
+
662
+ # print sentence
663
+ print(sentence)
664
+
665
+ # print predicted NER spans
666
+ print("The following NER tags are found:")
667
+ # iterate over entities and print
668
+ for entity in sentence.get_spans("ner"):
669
+ print(entity)
670
+
671
+
672
+
673
+ # In[33]:
674
+
675
+
676
+ def analyze_text(input_text):
677
+ # load tagger
678
+ tagger = SequenceTagger.load("flair/ner-english-large")
679
+
680
+ # make example sentence
681
+ sentence = Sentence(input_text)
682
+
683
+ # predict NER tags
684
+ tagger.predict(sentence)
685
+
686
+ # print sentence
687
+ print(sentence)
688
+
689
+ # Anonymize identified named entities
690
+ anonymized_sentence = str(sentence)
691
+ for entity in sentence.get_spans("ner"):
692
+ entity_text = entity.text
693
+ anonymized_text = "*" * len(entity_text)
694
+ anonymized_sentence = anonymized_sentence.replace(entity_text, anonymized_text)
695
+
696
+ # print anonymized sentence
697
+ print("Anonymized sentence:")
698
+ print(anonymized_sentence)
699
+ return anonymized_sentence
app.py ADDED
@@ -0,0 +1,128 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ from Final_file import FlairRecognizer
3
+ import os
4
+ import PyPDF2
5
+ import docx
6
+ # from io import BytesIO
7
+ from fpdf import FPDF
8
+ import io
9
+ from docx import Document
10
+
11
+ # Cache the model loading and prediction function
12
+ @st.cache_resource
13
+ def cached_predict_ner_tags(text):
14
+ return FlairRecognizer.predict_ner_tags(text)
15
+
16
+ # Cache the text analysis function
17
+ @st.cache_resource
18
+ def cached_analyze_text(text):
19
+ return FlairRecognizer.analyze_text(text)
20
+
21
+ def download_masked_file(masked_text, file_extension):
22
+
23
+ # Create a temporary file to store the masked text
24
+ temp_file_path = f"masked_output.{file_extension}"
25
+ with open(temp_file_path, "w") as temp_file:
26
+ temp_file.write(masked_text)
27
+
28
+ # Display a download button
29
+ st.download_button("Download Masked File", temp_file_path, file_name=f"masked_output.{file_extension}")
30
+
31
+ # Clean up the temporary file
32
+ os.remove(temp_file_path)
33
+
34
+ def extract_text_from_pdf(file_contents):
35
+ try:
36
+ # base64_pdf = base64.b64encode(file_contents.read()).decode('utf-8')
37
+ pdf_reader = PyPDF2.PdfReader(file_contents)
38
+ text = ''
39
+ for page_num in range(len(pdf_reader.pages)):
40
+ text += pdf_reader.pages[page_num].extract_text()
41
+ return text
42
+ except Exception as e:
43
+ return f"Error occurred: {str(e)}"
44
+
45
+
46
+
47
+ def create_pdf(text_content):
48
+ pdf = FPDF()
49
+ pdf.add_page()
50
+ pdf.add_font("DejaVuSans", "", "DejaVuSans.ttf",uni=True) # Add DejaVuSans font
51
+ pdf.set_font("DejaVuSans", size=12)
52
+ pdf.multi_cell(0, 10, txt=text_content)
53
+ return pdf
54
+
55
+ def create_word_file(text_content):
56
+ doc = Document()
57
+ doc.add_paragraph(text_content)
58
+ # Save the document to a BytesIO object
59
+ doc_io = io.BytesIO()
60
+ doc.save(doc_io)
61
+ doc_io.seek(0)
62
+ return doc_io
63
+
64
+ def main():
65
+ st.title('PII Masking App')
66
+ st.sidebar.header('Upload Options')
67
+ upload_option = st.sidebar.radio("Choose upload option:", ('Text Input', 'File Upload'))
68
+
69
+ # # Dropdown menu with four choices
70
+ # st.sidebar.header('Masking Options')
71
+ # choice = st.sidebar.selectbox('Choose your masking option:', ['Option 1', 'Option 2', 'Option 3', 'Option 4'])
72
+ masked_text_public = ''
73
+ if upload_option == 'Text Input':
74
+ input_text = st.text_area("Enter text here:")
75
+ if st.button('Analyze'):
76
+ with st.spinner('Wait for it... the model is loading'):
77
+ cached_predict_ner_tags(input_text)
78
+ masked_text = cached_analyze_text(input_text)
79
+ st.text_area("Masked text:", value=masked_text, height=200)
80
+ elif upload_option == 'File Upload':
81
+ uploaded_file = st.file_uploader("Upload a file", type=['txt', 'pdf', 'docx'])
82
+ if uploaded_file is not None:
83
+ file_contents = uploaded_file.read()
84
+ # Process PDF file
85
+ if uploaded_file.type == 'application/pdf':
86
+ extracted_text = extract_text_from_pdf(uploaded_file)
87
+ if st.button('Analyze'):
88
+ with st.spinner('Wait for it... the model is loading'):
89
+ cached_predict_ner_tags(extracted_text)
90
+ masked_text = cached_analyze_text(extracted_text)
91
+ st.text_area("Masked text:", value=masked_text, height=200) # Display the extracted text
92
+ if extracted_text:
93
+ pdf = create_pdf(masked_text)
94
+ # Save PDF to temporary location
95
+ pdf_file_path = "masked_output.pdf"
96
+ pdf.output(pdf_file_path)
97
+
98
+ # Download button
99
+ st.download_button(label="Download", data=open(pdf_file_path, "rb"), file_name="masked_output.pdf", mime="application/pdf")
100
+ else:
101
+ st.warning("Please enter some text to download as PDF.")
102
+
103
+ # Process Word document
104
+ elif uploaded_file.type == 'application/vnd.openxmlformats-officedocument.wordprocessingml.document':
105
+ doc = docx.Document(io.BytesIO(file_contents))
106
+ text = ''
107
+ for paragraph in doc.paragraphs:
108
+ text += paragraph.text
109
+ if st.button('Analyze'):
110
+ with st.spinner('Wait for it... the model is loading'):
111
+ cached_predict_ner_tags(text)
112
+ masked_text = cached_analyze_text(text)
113
+ st.text_area("Masked text:", value=masked_text, height=200)
114
+ #create word file
115
+ doc_io = create_word_file(masked_text)
116
+ #download it
117
+ st.download_button(label="Download", data=doc_io, file_name="masked_text.docx", mime="application/vnd.openxmlformats-officedocument.wordprocessingml.document")
118
+ else:
119
+ if st.button('Analyze'):
120
+ with st.spinner('Wait for it... the model is loading'):
121
+ cached_predict_ner_tags(file_contents.decode())
122
+ masked_text = cached_analyze_text(file_contents.decode())
123
+ st.text_area("Masked text:", value=masked_text, height=200)
124
+ st.download_button(label="Download",data = masked_text,file_name="masked_text.txt")
125
+
126
+
127
+ if __name__ == "__main__":
128
+ main()
conlleval.py ADDED
@@ -0,0 +1,235 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ This script applies to IOB2 or IOBES tagging scheme.
3
+ If you are using a different scheme, please convert to IOB2 or IOBES.
4
+
5
+ IOB2:
6
+ - B = begin,
7
+ - I = inside but not the first,
8
+ - O = outside
9
+
10
+ e.g.
11
+ John lives in New York City .
12
+ B-PER O O B-LOC I-LOC I-LOC O
13
+
14
+ IOBES:
15
+ - B = begin,
16
+ - E = end,
17
+ - S = singleton,
18
+ - I = inside but not the first or the last,
19
+ - O = outside
20
+
21
+ e.g.
22
+ John lives in New York City .
23
+ S-PER O O B-LOC I-LOC E-LOC O
24
+
25
+ prefix: IOBES
26
+ chunk_type: PER, LOC, etc.
27
+ """
28
+ from __future__ import division, print_function, unicode_literals
29
+
30
+ import sys
31
+ from collections import defaultdict
32
+
33
+ def split_tag(chunk_tag):
34
+ """
35
+ split chunk tag into IOBES prefix and chunk_type
36
+ e.g.
37
+ B-PER -> (B, PER)
38
+ O -> (O, None)
39
+ """
40
+ if chunk_tag == 'O':
41
+ return ('O', None)
42
+ return chunk_tag.split('-', maxsplit=1)
43
+
44
+ def is_chunk_end(prev_tag, tag):
45
+ """
46
+ check if the previous chunk ended between the previous and current word
47
+ e.g.
48
+ (B-PER, I-PER) -> False
49
+ (B-LOC, O) -> True
50
+
51
+ Note: in case of contradicting tags, e.g. (B-PER, I-LOC)
52
+ this is considered as (B-PER, B-LOC)
53
+ """
54
+ prefix1, chunk_type1 = split_tag(prev_tag)
55
+ prefix2, chunk_type2 = split_tag(tag)
56
+
57
+ if prefix1 == 'O':
58
+ return False
59
+ if prefix2 == 'O':
60
+ return prefix1 != 'O'
61
+
62
+ if chunk_type1 != chunk_type2:
63
+ return True
64
+
65
+ return prefix2 in ['B', 'S'] or prefix1 in ['E', 'S']
66
+
67
+ def is_chunk_start(prev_tag, tag):
68
+ """
69
+ check if a new chunk started between the previous and current word
70
+ """
71
+ prefix1, chunk_type1 = split_tag(prev_tag)
72
+ prefix2, chunk_type2 = split_tag(tag)
73
+
74
+ if prefix2 == 'O':
75
+ return False
76
+ if prefix1 == 'O':
77
+ return prefix2 != 'O'
78
+
79
+ if chunk_type1 != chunk_type2:
80
+ return True
81
+
82
+ return prefix2 in ['B', 'S'] or prefix1 in ['E', 'S']
83
+
84
+
85
+ def calc_metrics(tp, p, t, percent=True):
86
+ """
87
+ compute overall precision, recall and FB1 (default values are 0.0)
88
+ if percent is True, return 100 * original decimal value
89
+ """
90
+ precision = tp / p if p else 0
91
+ recall = tp / t if t else 0
92
+ fb1 = 2 * precision * recall / (precision + recall) if precision + recall else 0
93
+ if percent:
94
+ return 100 * precision, 100 * recall, 100 * fb1
95
+ else:
96
+ return precision, recall, fb1
97
+
98
+
99
+ def count_chunks(true_seqs, pred_seqs):
100
+ """
101
+ true_seqs: a list of true tags
102
+ pred_seqs: a list of predicted tags
103
+
104
+ return:
105
+ correct_chunks: a dict (counter),
106
+ key = chunk types,
107
+ value = number of correctly identified chunks per type
108
+ true_chunks: a dict, number of true chunks per type
109
+ pred_chunks: a dict, number of identified chunks per type
110
+
111
+ correct_counts, true_counts, pred_counts: similar to above, but for tags
112
+ """
113
+ correct_chunks = defaultdict(int)
114
+ true_chunks = defaultdict(int)
115
+ pred_chunks = defaultdict(int)
116
+
117
+ correct_counts = defaultdict(int)
118
+ true_counts = defaultdict(int)
119
+ pred_counts = defaultdict(int)
120
+
121
+ prev_true_tag, prev_pred_tag = 'O', 'O'
122
+ correct_chunk = None
123
+
124
+ for true_tag, pred_tag in zip(true_seqs, pred_seqs):
125
+ if true_tag == pred_tag:
126
+ correct_counts[true_tag] += 1
127
+ true_counts[true_tag] += 1
128
+ pred_counts[pred_tag] += 1
129
+
130
+ _, true_type = split_tag(true_tag)
131
+ _, pred_type = split_tag(pred_tag)
132
+
133
+ if correct_chunk is not None:
134
+ true_end = is_chunk_end(prev_true_tag, true_tag)
135
+ pred_end = is_chunk_end(prev_pred_tag, pred_tag)
136
+
137
+ if pred_end and true_end:
138
+ correct_chunks[correct_chunk] += 1
139
+ correct_chunk = None
140
+ elif pred_end != true_end or true_type != pred_type:
141
+ correct_chunk = None
142
+
143
+ true_start = is_chunk_start(prev_true_tag, true_tag)
144
+ pred_start = is_chunk_start(prev_pred_tag, pred_tag)
145
+
146
+ if true_start and pred_start and true_type == pred_type:
147
+ correct_chunk = true_type
148
+ if true_start:
149
+ true_chunks[true_type] += 1
150
+ if pred_start:
151
+ pred_chunks[pred_type] += 1
152
+
153
+ prev_true_tag, prev_pred_tag = true_tag, pred_tag
154
+ if correct_chunk is not None:
155
+ correct_chunks[correct_chunk] += 1
156
+
157
+ return (correct_chunks, true_chunks, pred_chunks,
158
+ correct_counts, true_counts, pred_counts)
159
+
160
+ def get_result(correct_chunks, true_chunks, pred_chunks,
161
+ correct_counts, true_counts, pred_counts, verbose=True):
162
+ """
163
+ if verbose, print overall performance, as well as preformance per chunk type;
164
+ otherwise, simply return overall prec, rec, f1 scores
165
+ """
166
+ # sum counts
167
+ sum_correct_chunks = sum(correct_chunks.values())
168
+ sum_true_chunks = sum(true_chunks.values())
169
+ sum_pred_chunks = sum(pred_chunks.values())
170
+
171
+ sum_correct_counts = sum(correct_counts.values())
172
+ sum_true_counts = sum(true_counts.values())
173
+
174
+ nonO_correct_counts = sum(v for k, v in correct_counts.items() if k != 'O')
175
+ nonO_true_counts = sum(v for k, v in true_counts.items() if k != 'O')
176
+
177
+ chunk_types = sorted(list(set(list(true_chunks) + list(pred_chunks))))
178
+
179
+ # compute overall precision, recall and FB1 (default values are 0.0)
180
+ prec, rec, f1 = calc_metrics(sum_correct_chunks, sum_pred_chunks, sum_true_chunks)
181
+ res = (prec, rec, f1)
182
+ if not verbose:
183
+ return res
184
+
185
+ # print overall performance, and performance per chunk type
186
+
187
+ print("processed %i tokens with %i phrases; " % (sum_true_counts, sum_true_chunks), end='')
188
+ print("found: %i phrases; correct: %i.\n" % (sum_pred_chunks, sum_correct_chunks), end='')
189
+
190
+ print("accuracy: %6.2f%%; (non-O)" % (100*nonO_correct_counts/nonO_true_counts))
191
+ print("accuracy: %6.2f%%; " % (100*sum_correct_counts/sum_true_counts), end='')
192
+ print("precision: %6.2f%%; recall: %6.2f%%; FB1: %6.2f" % (prec, rec, f1))
193
+
194
+ # for each chunk type, compute precision, recall and FB1 (default values are 0.0)
195
+ for t in chunk_types:
196
+ prec, rec, f1 = calc_metrics(correct_chunks[t], pred_chunks[t], true_chunks[t])
197
+ print("%17s: " %t , end='')
198
+ print("precision: %6.2f%%; recall: %6.2f%%; FB1: %6.2f" %
199
+ (prec, rec, f1), end='')
200
+ print(" %d" % pred_chunks[t])
201
+
202
+ return res
203
+ # you can generate LaTeX output for tables like in
204
+ # http://cnts.uia.ac.be/conll2003/ner/example.tex
205
+ # but I'm not implementing this
206
+
207
+ def evaluate(true_seqs, pred_seqs, verbose=True):
208
+ (correct_chunks, true_chunks, pred_chunks,
209
+ correct_counts, true_counts, pred_counts) = count_chunks(true_seqs, pred_seqs)
210
+ result = get_result(correct_chunks, true_chunks, pred_chunks,
211
+ correct_counts, true_counts, pred_counts, verbose=verbose)
212
+ return result
213
+
214
+ def evaluate_conll_file(fileIterator):
215
+ true_seqs, pred_seqs = [], []
216
+
217
+ for line in fileIterator:
218
+ cols = line.strip().split()
219
+ # each non-empty line must contain >= 3 columns
220
+ if not cols:
221
+ true_seqs.append('O')
222
+ pred_seqs.append('O')
223
+ elif len(cols) < 3:
224
+ raise IOError("conlleval: too few columns in line %s\n" % line)
225
+ else:
226
+ # extract tags from last 2 columns
227
+ true_seqs.append(cols[-2])
228
+ pred_seqs.append(cols[-1])
229
+ return evaluate(true_seqs, pred_seqs)
230
+
231
+ if __name__ == '__main__':
232
+ """
233
+ usage: conlleval < file
234
+ """
235
+ evaluate_conll_file(sys.stdin)
requirements.txt ADDED
Binary file (5.85 kB). View file