Spaces:
Sleeping
Sleeping
import torch | |
import tiktoken | |
from model import * | |
import gradio as gr | |
enc = tiktoken.get_encoding('gpt2') | |
model = torch.load('model.pt',map_location='cpu') | |
def response(message = "Hello, I'm a language model", num_return_sequences = 5,max_length = 30,top_k = 50): | |
tokens = enc.encode(message) | |
tokens = torch.tensor(tokens, dtype= torch.long) # (8,) #check tiktoken app | |
tokens = tokens.unsqueeze(0).repeat(num_return_sequences, 1) # (5, 8) | |
x = tokens.to('cpu') | |
torch.manual_seed(42) | |
torch.cuda.manual_seed(42) | |
while x.size(1) < max_length: | |
# forward the model to get the logits | |
with torch.no_grad(): | |
logits = model(x)[0] # (B, T, vocab_size) | |
# take the logits at the last position | |
logits = logits[:, -1, :] # (B, vocab_size) | |
# get the probabilities | |
probs = F.softmax(logits, dim=-1) | |
# do top-k sampling of 50 (huggingface pipeline default) | |
# topk_probs here becomes (5, 50), topk_indices is (5, 50) | |
topk_probs, topk_indices = torch.topk(probs, top_k, dim=-1) | |
# select a token from the top-k probabilities | |
# note: multinomial does not demand the input to sum to 1 | |
ix = torch.multinomial(topk_probs, 1) # (B, 1) | |
# gather the corresponding indices | |
xcol = torch.gather(topk_indices, -1, ix) # (B, 1) | |
# append to the sequence | |
x = torch.cat((x, xcol), dim=1) | |
# print the generated text | |
return_text = "" | |
for i in range(num_return_sequences): | |
tokens = x[i, :max_length].tolist() | |
decoded = enc.decode(tokens) | |
return_text = return_text + ">"+ decoded +"\n" | |
return return_text | |
# Function to generate text | |
def generate_text(prompt, top_k, return_sequences, max_tokens): | |
ans = response(message = prompt, num_return_sequences = return_sequences,max_length = max_tokens,top_k = top_k) | |
return ans | |
# Create Gradio interface | |
iface = gr.Interface( | |
fn=generate_text, | |
inputs=[ | |
gr.Textbox(lines=5, label="Input Text"), | |
gr.Slider(minimum=1, maximum=100, value=50, step=1, label="Top-k"), | |
gr.Slider(minimum=1, maximum=5, value=1, step=1, label="Return Sequences"), | |
gr.Slider(minimum=10, maximum=150, value=20, step=5, label="Max Tokens") | |
], | |
outputs=gr.Textbox(label="Generated Text"), | |
title="GPT-2 Text Generator", | |
description="Generate text using GPT-2 model with adjustable parameters.", | |
examples=[["Hello, I'm a language model"]], | |
) | |
# Launch the interface | |
iface.launch() | |