import os from transformers import Wav2Vec2ForCTC, Wav2Vec2Tokenizer import nltk import os # Define the directory to save the data data_dir = 'nltk_data' # Create the directory if it does not exist if not os.path.exists(data_dir): os.makedirs(data_dir) # Set the NLTK data path to the local directory nltk.data.path.append(data_dir) # Download the required NLTK data nltk.download('punkt', download_dir=data_dir) nltk.download('words', download_dir=data_dir) from transformers import Wav2Vec2Tokenizer, Wav2Vec2ForCTC, DistilBertTokenizer, DistilBertForSequenceClassification import os # Define directories to save the models and tokenizers pronunciation_model_dir = 'pronunciation_model' fluency_model_dir = 'fluency_model' # Create the directories if they don't exist os.makedirs(pronunciation_model_dir, exist_ok=True) os.makedirs(fluency_model_dir, exist_ok=True) # Download and save the Pronunciation model and tokenizer print("Downloading pronunciation tokenizer...") pronunciation_tokenizer = Wav2Vec2Tokenizer.from_pretrained("facebook/wav2vec2-base-960h") pronunciation_tokenizer.save_pretrained(pronunciation_model_dir) print("Downloading pronunciation model...") pronunciation_model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-960h") pronunciation_model.save_pretrained(pronunciation_model_dir) # Download and save the Fluency model and tokenizer print("Downloading fluency tokenizer...") fluency_tokenizer = DistilBertTokenizer.from_pretrained('distilbert-base-uncased') fluency_tokenizer.save_pretrained(fluency_model_dir) print("Downloading fluency model...") fluency_model = DistilBertForSequenceClassification.from_pretrained("Kartikeyssj2/Fluency_Scoring_V2") fluency_model.save_pretrained(fluency_model_dir) print("Download and save completed.") from sentence_transformers import SentenceTransformer import os # Define the directory to save the model model_dir = 'content_relevance_model' # Create the directory if it does not exist os.makedirs(model_dir, exist_ok=True) # Download and save the SentenceTransformer model print("Downloading SentenceTransformer model...") model = SentenceTransformer('sentence-transformers/msmarco-distilbert-cos-v5') model.save(model_dir) print("Model downloaded and saved successfully.") from transformers import BlipProcessor, BlipForConditionalGeneration import os # Define directories to save the models and processors processor_dir = 'blip_processor' model_dir = 'blip_model' # Create the directories if they don't exist os.makedirs(processor_dir, exist_ok=True) os.makedirs(model_dir, exist_ok=True) # Download and save the BlipProcessor print("Downloading BlipProcessor...") image_captioning_processor = BlipProcessor.from_pretrained("noamrot/FuseCap") image_captioning_processor.save_pretrained(processor_dir) print("BlipProcessor downloaded and saved.") # Download and save the BlipForConditionalGeneration model print("Downloading BlipForConditionalGeneration model...") image_captioning_model = BlipForConditionalGeneration.from_pretrained("noamrot/FuseCap") image_captioning_model.save_pretrained(model_dir) print("BlipForConditionalGeneration model downloaded and saved.")