Spaces:
Runtime error
Runtime error
import torch | |
import torch.nn.functional as F | |
from torch import nn | |
# DropPath copied from timm library | |
def drop_path( | |
x, drop_prob: float = 0.0, training: bool = False, scale_by_keep: bool = True | |
): | |
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). | |
This is the same as the DropConnect impl I created for EfficientNet, etc networks, however, | |
the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper... | |
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for | |
changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use | |
'survival rate' as the argument. | |
""" # noqa: E501 | |
if drop_prob == 0.0 or not training: | |
return x | |
keep_prob = 1 - drop_prob | |
shape = (x.shape[0],) + (1,) * ( | |
x.ndim - 1 | |
) # work with diff dim tensors, not just 2D ConvNets | |
random_tensor = x.new_empty(shape).bernoulli_(keep_prob) | |
if keep_prob > 0.0 and scale_by_keep: | |
random_tensor.div_(keep_prob) | |
return x * random_tensor | |
class DropPath(nn.Module): | |
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).""" # noqa: E501 | |
def __init__(self, drop_prob: float = 0.0, scale_by_keep: bool = True): | |
super(DropPath, self).__init__() | |
self.drop_prob = drop_prob | |
self.scale_by_keep = scale_by_keep | |
def forward(self, x): | |
return drop_path(x, self.drop_prob, self.training, self.scale_by_keep) | |
def extra_repr(self): | |
return f"drop_prob={round(self.drop_prob,3):0.3f}" | |
class LayerNorm(nn.Module): | |
r"""LayerNorm that supports two data formats: channels_last (default) or channels_first. | |
The ordering of the dimensions in the inputs. channels_last corresponds to inputs with | |
shape (batch_size, height, width, channels) while channels_first corresponds to inputs | |
with shape (batch_size, channels, height, width). | |
""" # noqa: E501 | |
def __init__(self, normalized_shape, eps=1e-6, data_format="channels_last"): | |
super().__init__() | |
self.weight = nn.Parameter(torch.ones(normalized_shape)) | |
self.bias = nn.Parameter(torch.zeros(normalized_shape)) | |
self.eps = eps | |
self.data_format = data_format | |
if self.data_format not in ["channels_last", "channels_first"]: | |
raise NotImplementedError | |
self.normalized_shape = (normalized_shape,) | |
def forward(self, x): | |
if self.data_format == "channels_last": | |
return F.layer_norm( | |
x, self.normalized_shape, self.weight, self.bias, self.eps | |
) | |
elif self.data_format == "channels_first": | |
u = x.mean(1, keepdim=True) | |
s = (x - u).pow(2).mean(1, keepdim=True) | |
x = (x - u) / torch.sqrt(s + self.eps) | |
x = self.weight[:, None] * x + self.bias[:, None] | |
return x | |
# ConvNeXt Block copied from https://github.com/fishaudio/fish-diffusion/blob/main/fish_diffusion/modules/convnext.py | |
class ConvNeXtBlock(nn.Module): | |
r"""ConvNeXt Block. There are two equivalent implementations: | |
(1) DwConv -> LayerNorm (channels_first) -> 1x1 Conv -> GELU -> 1x1 Conv; all in (N, C, H, W) | |
(2) DwConv -> Permute to (N, H, W, C); LayerNorm (channels_last) -> Linear -> GELU -> Linear; Permute back | |
We use (2) as we find it slightly faster in PyTorch | |
Args: | |
dim (int): Number of input channels. | |
drop_path (float): Stochastic depth rate. Default: 0.0 | |
layer_scale_init_value (float): Init value for Layer Scale. Default: 1e-6. | |
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4.0. | |
kernel_size (int): Kernel size for depthwise conv. Default: 7. | |
dilation (int): Dilation for depthwise conv. Default: 1. | |
""" # noqa: E501 | |
def __init__( | |
self, | |
dim: int, | |
drop_path: float = 0.0, | |
layer_scale_init_value: float = 1e-6, | |
mlp_ratio: float = 4.0, | |
kernel_size: int = 7, | |
dilation: int = 1, | |
): | |
super().__init__() | |
self.dwconv = nn.Conv1d( | |
dim, | |
dim, | |
kernel_size=kernel_size, | |
padding=int(dilation * (kernel_size - 1) / 2), | |
groups=dim, | |
) # depthwise conv | |
self.norm = LayerNorm(dim, eps=1e-6) | |
self.pwconv1 = nn.Linear( | |
dim, int(mlp_ratio * dim) | |
) # pointwise/1x1 convs, implemented with linear layers | |
self.act = nn.GELU() | |
self.pwconv2 = nn.Linear(int(mlp_ratio * dim), dim) | |
self.gamma = ( | |
nn.Parameter(layer_scale_init_value * torch.ones((dim)), requires_grad=True) | |
if layer_scale_init_value > 0 | |
else None | |
) | |
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() | |
def forward(self, x, apply_residual: bool = True): | |
input = x | |
x = self.dwconv(x) | |
x = x.permute(0, 2, 1) # (N, C, L) -> (N, L, C) | |
x = self.norm(x) | |
x = self.pwconv1(x) | |
x = self.act(x) | |
x = self.pwconv2(x) | |
if self.gamma is not None: | |
x = self.gamma * x | |
x = x.permute(0, 2, 1) # (N, L, C) -> (N, C, L) | |
x = self.drop_path(x) | |
if apply_residual: | |
x = input + x | |
return x | |
class ConvNeXtEncoder(nn.Module): | |
def __init__( | |
self, | |
input_channels: int = 3, | |
depths: list[int] = [3, 3, 9, 3], | |
dims: list[int] = [96, 192, 384, 768], | |
drop_path_rate: float = 0.0, | |
layer_scale_init_value: float = 1e-6, | |
kernel_size: int = 7, | |
): | |
super().__init__() | |
assert len(depths) == len(dims) | |
self.downsample_layers = nn.ModuleList() | |
stem = nn.Sequential( | |
nn.Conv1d( | |
input_channels, | |
dims[0], | |
kernel_size=kernel_size, | |
padding=kernel_size // 2, | |
padding_mode="zeros", | |
), | |
LayerNorm(dims[0], eps=1e-6, data_format="channels_first"), | |
) | |
self.downsample_layers.append(stem) | |
for i in range(len(depths) - 1): | |
mid_layer = nn.Sequential( | |
LayerNorm(dims[i], eps=1e-6, data_format="channels_first"), | |
nn.Conv1d(dims[i], dims[i + 1], kernel_size=1), | |
) | |
self.downsample_layers.append(mid_layer) | |
self.stages = nn.ModuleList() | |
dp_rates = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] | |
cur = 0 | |
for i in range(len(depths)): | |
stage = nn.Sequential( | |
*[ | |
ConvNeXtBlock( | |
dim=dims[i], | |
drop_path=dp_rates[cur + j], | |
layer_scale_init_value=layer_scale_init_value, | |
kernel_size=kernel_size, | |
) | |
for j in range(depths[i]) | |
] | |
) | |
self.stages.append(stage) | |
cur += depths[i] | |
self.norm = LayerNorm(dims[-1], eps=1e-6, data_format="channels_first") | |
self.apply(self._init_weights) | |
def _init_weights(self, m): | |
if isinstance(m, (nn.Conv1d, nn.Linear)): | |
nn.init.trunc_normal_(m.weight, std=0.02) | |
nn.init.constant_(m.bias, 0) | |
def forward( | |
self, | |
x: torch.Tensor, | |
) -> torch.Tensor: | |
for i in range(len(self.downsample_layers)): | |
x = self.downsample_layers[i](x) | |
x = self.stages[i](x) | |
return self.norm(x) | |