Keetawan commited on
Commit
32c62e7
1 Parent(s): 3c3e061

DenseNet121 Chest Xray Classifier

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ examples/NORMAL(1283).jpg filter=lfs diff=lfs merge=lfs -text
app.py ADDED
@@ -0,0 +1,77 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ### 1. Imports and class names setup ###
2
+ import gradio as gr
3
+ import os
4
+ import torch
5
+
6
+ from model import create_densenet121_model
7
+ from timeit import default_timer as timer
8
+ from typing import Tuple, Dict
9
+
10
+ # Setup class names
11
+ class_names = ["COVID19", "NORMAL", "PNEUMONIA"]
12
+
13
+ ### 2. Model and transforms preparation ###
14
+
15
+ # Create DenseNet121 model
16
+ densenet121, densenet121_transforms = create_densenet121_model(
17
+ num_classes=3, # len(class_names) would also work
18
+ )
19
+
20
+ # Load saved weights
21
+ densenet121.load_state_dict(
22
+ torch.load(
23
+ f="densenet_chest_xray_weight.pth",
24
+ map_location=torch.device("cpu"), # load to CPU
25
+ )
26
+ )
27
+
28
+ ### 3. Predict function ###
29
+
30
+ # Create predict function
31
+ def predict(img) -> Tuple[Dict, float]:
32
+ """Transforms and performs a prediction on img and returns prediction and time taken.
33
+ """
34
+ # Start the timer
35
+ start_time = timer()
36
+
37
+ # Transform the target image and add a batch dimension
38
+ img = densenet121_transforms(img).unsqueeze(0)
39
+
40
+ # Put model into evaluation mode and turn on inference mode
41
+ effnetb2.eval()
42
+ with torch.inference_mode():
43
+ # Pass the transformed image through the model and turn the prediction logits into prediction probabilities
44
+ pred_probs = torch.softmax(effnetb2(img), dim=1)
45
+
46
+ # Create a prediction label and prediction probability dictionary for each prediction class (this is the required format for Gradio's output parameter)
47
+ pred_labels_and_probs = {class_names[i]: float(pred_probs[0][i]) for i in range(len(class_names))}
48
+
49
+ # Calculate the prediction time
50
+ pred_time = round(timer() - start_time, 5)
51
+
52
+ # Return the prediction dictionary and prediction time
53
+ return pred_labels_and_probs, pred_time
54
+
55
+ ### 4. Gradio app ###
56
+
57
+ # Create title, description and article strings
58
+ title = "Chest X-ray Analysis for COVID-19, Pneumonia, and Normal Cases using DenseNet121"
59
+ description = "Utilizing Deep Learning for accurate detection and classification of Chest X-ray images."
60
+ article = "This project employs the DenseNet121 model to analyze Chest X-ray images for classification into COVID-19, Pneumonia, and Normal cases. Leveraging the capabilities of Deep Learning, the model ensures precise and reliable results, contributing to improved medical diagnostics."
61
+
62
+ # Create examples list from "examples/" directory
63
+ example_list = [["examples/" + example] for example in os.listdir("examples")]
64
+
65
+ # Create the Gradio demo
66
+ demo = gr.Interface(fn=predict, # mapping function from input to output
67
+ inputs=gr.Image(type="pil"), # what are the inputs?
68
+ outputs=[gr.Label(num_top_classes=3, label="Predictions"), # what are the outputs?
69
+ gr.Number(label="Prediction time (s)")], # our fn has two outputs, therefore we have two outputs
70
+ # Create examples list from "examples/" directory
71
+ examples=example_list,
72
+ title=title,
73
+ description=description,
74
+ article=article)
75
+
76
+ # Launch the demo!
77
+ demo.launch()
densenet_chest_xray_weight.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:41e385bc0798f93345f9669ea6e5e80062b4147d680614b0725587088bcef5ca
3
+ size 28446341
examples/COVID19(551).jpg ADDED
examples/NORMAL(1283).jpg ADDED

Git LFS Details

  • SHA256: 2eccb0310876426fa1c0954181c9ca896f1a729745fd8a58835fb3d322aa85a9
  • Pointer size: 132 Bytes
  • Size of remote file: 2.39 MB
examples/PNEUMONIA(4112).jpg ADDED
model.py ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torchvision
3
+
4
+ from torch import nn
5
+
6
+
7
+ def create_densenet121_model(num_classes:int=3,
8
+ seed:int=42):
9
+ # Create DenseNet121 pretrained weights, transforms and model
10
+ weights = torchvision.models.DenseNet121_Weights.DEFAULT
11
+ transforms = weights.transforms()
12
+ model = torchvision.models.densenet121(weights=weights)
13
+
14
+ # Freeze all layers in base model
15
+ for param in model.parameters():
16
+ param.requires_grad = False
17
+
18
+ # Change classifier head with random seed for reproducibility
19
+ torch.manual_seed(seed)
20
+
21
+ model.classifier = torch.nn.Sequential(
22
+ torch.nn.Dropout(p=0.2, inplace=True),
23
+ torch.nn.Linear(in_features=1024,
24
+ out_features=3,
25
+ bias=True))
26
+
27
+ return model, transforms
requirements.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ torch==1.12.0
2
+ torchvision==0.13.0
3
+ gradio==3.1.4