Spaces:
Running
Running
''' | |
@paper: GAN Prior Embedded Network for Blind Face Restoration in the Wild (CVPR2021) | |
@author: yangxy ([email protected]) | |
''' | |
import os | |
import torch | |
import torch.backends.cudnn as cudnn | |
import numpy as np | |
from data import cfg_re50 | |
from layers.functions.prior_box import PriorBox | |
from utils.nms.py_cpu_nms import py_cpu_nms | |
import cv2 | |
from facemodels.retinaface import RetinaFace | |
from utils.box_utils import decode, decode_landm | |
import time | |
import torch.nn.functional as F | |
class RetinaFaceDetection(object): | |
def __init__(self, base_dir, device='cuda', network='RetinaFace-R50'): | |
torch.set_grad_enabled(False) | |
cudnn.benchmark = True | |
self.pretrained_path = os.path.join(base_dir, 'weights', network+'.pth') | |
self.device = device #torch.cuda.current_device() | |
self.cfg = cfg_re50 | |
self.net = RetinaFace(cfg=self.cfg, phase='test') | |
self.load_model() | |
self.net = self.net.to(device) | |
self.mean = torch.tensor([[[[104]], [[117]], [[123]]]]).to(device) | |
def check_keys(self, pretrained_state_dict): | |
ckpt_keys = set(pretrained_state_dict.keys()) | |
model_keys = set(self.net.state_dict().keys()) | |
used_pretrained_keys = model_keys & ckpt_keys | |
unused_pretrained_keys = ckpt_keys - model_keys | |
missing_keys = model_keys - ckpt_keys | |
assert len(used_pretrained_keys) > 0, 'load NONE from pretrained checkpoint' | |
return True | |
def remove_prefix(self, state_dict, prefix): | |
''' Old style model==stored with all names of parameters sharing common prefix 'module.' ''' | |
f = lambda x: x.split(prefix, 1)[-1] if x.startswith(prefix) else x | |
return {f(key): value for key, value in state_dict.items()} | |
def load_model(self, load_to_cpu=False): | |
#if load_to_cpu: | |
# pretrained_dict = torch.load(self.pretrained_path, map_location=lambda storage, loc: storage) | |
#else: | |
# pretrained_dict = torch.load(self.pretrained_path, map_location=lambda storage, loc: storage.cuda()) | |
pretrained_dict = torch.load(self.pretrained_path, map_location=torch.device('cpu')) | |
if "state_dict" in pretrained_dict.keys(): | |
pretrained_dict = self.remove_prefix(pretrained_dict['state_dict'], 'module.') | |
else: | |
pretrained_dict = self.remove_prefix(pretrained_dict, 'module.') | |
self.check_keys(pretrained_dict) | |
self.net.load_state_dict(pretrained_dict, strict=False) | |
self.net.eval() | |
def detect(self, img_raw, resize=1, confidence_threshold=0.9, nms_threshold=0.4, top_k=5000, keep_top_k=750, save_image=False): | |
img = np.float32(img_raw) | |
im_height, im_width = img.shape[:2] | |
ss = 1.0 | |
# tricky | |
if max(im_height, im_width) > 1500: | |
ss = 1000.0/max(im_height, im_width) | |
img = cv2.resize(img, (0,0), fx=ss, fy=ss) | |
im_height, im_width = img.shape[:2] | |
scale = torch.Tensor([img.shape[1], img.shape[0], img.shape[1], img.shape[0]]) | |
img -= (104, 117, 123) | |
img = img.transpose(2, 0, 1) | |
img = torch.from_numpy(img).unsqueeze(0) | |
img = img.to(self.device) | |
scale = scale.to(self.device) | |
loc, conf, landms = self.net(img) # forward pass | |
priorbox = PriorBox(self.cfg, image_size=(im_height, im_width)) | |
priors = priorbox.forward() | |
priors = priors.to(self.device) | |
prior_data = priors.data | |
boxes = decode(loc.data.squeeze(0), prior_data, self.cfg['variance']) | |
boxes = boxes * scale / resize | |
boxes = boxes.cpu().numpy() | |
scores = conf.squeeze(0).data.cpu().numpy()[:, 1] | |
landms = decode_landm(landms.data.squeeze(0), prior_data, self.cfg['variance']) | |
scale1 = torch.Tensor([img.shape[3], img.shape[2], img.shape[3], img.shape[2], | |
img.shape[3], img.shape[2], img.shape[3], img.shape[2], | |
img.shape[3], img.shape[2]]) | |
scale1 = scale1.to(self.device) | |
landms = landms * scale1 / resize | |
landms = landms.cpu().numpy() | |
# ignore low scores | |
inds = np.where(scores > confidence_threshold)[0] | |
boxes = boxes[inds] | |
landms = landms[inds] | |
scores = scores[inds] | |
# keep top-K before NMS | |
order = scores.argsort()[::-1][:top_k] | |
boxes = boxes[order] | |
landms = landms[order] | |
scores = scores[order] | |
# do NMS | |
dets = np.hstack((boxes, scores[:, np.newaxis])).astype(np.float32, copy=False) | |
keep = py_cpu_nms(dets, nms_threshold) | |
# keep = nms(dets, nms_threshold,force_cpu=args.cpu) | |
dets = dets[keep, :] | |
landms = landms[keep] | |
# keep top-K faster NMS | |
dets = dets[:keep_top_k, :] | |
landms = landms[:keep_top_k, :] | |
# sort faces(delete) | |
''' | |
fscores = [det[4] for det in dets] | |
sorted_idx = sorted(range(len(fscores)), key=lambda k:fscores[k], reverse=False) # sort index | |
tmp = [landms[idx] for idx in sorted_idx] | |
landms = np.asarray(tmp) | |
''' | |
landms = landms.reshape((-1, 5, 2)) | |
landms = landms.transpose((0, 2, 1)) | |
landms = landms.reshape(-1, 10, ) | |
return dets/ss, landms/ss | |
def detect_tensor(self, img, resize=1, confidence_threshold=0.9, nms_threshold=0.4, top_k=5000, keep_top_k=750, save_image=False): | |
im_height, im_width = img.shape[-2:] | |
ss = 1000/max(im_height, im_width) | |
img = F.interpolate(img, scale_factor=ss) | |
im_height, im_width = img.shape[-2:] | |
scale = torch.Tensor([im_width, im_height, im_width, im_height]).to(self.device) | |
img -= self.mean | |
loc, conf, landms = self.net(img) # forward pass | |
priorbox = PriorBox(self.cfg, image_size=(im_height, im_width)) | |
priors = priorbox.forward() | |
priors = priors.to(self.device) | |
prior_data = priors.data | |
boxes = decode(loc.data.squeeze(0), prior_data, self.cfg['variance']) | |
boxes = boxes * scale / resize | |
boxes = boxes.cpu().numpy() | |
scores = conf.squeeze(0).data.cpu().numpy()[:, 1] | |
landms = decode_landm(landms.data.squeeze(0), prior_data, self.cfg['variance']) | |
scale1 = torch.Tensor([img.shape[3], img.shape[2], img.shape[3], img.shape[2], | |
img.shape[3], img.shape[2], img.shape[3], img.shape[2], | |
img.shape[3], img.shape[2]]) | |
scale1 = scale1.to(self.device) | |
landms = landms * scale1 / resize | |
landms = landms.cpu().numpy() | |
# ignore low scores | |
inds = np.where(scores > confidence_threshold)[0] | |
boxes = boxes[inds] | |
landms = landms[inds] | |
scores = scores[inds] | |
# keep top-K before NMS | |
order = scores.argsort()[::-1][:top_k] | |
boxes = boxes[order] | |
landms = landms[order] | |
scores = scores[order] | |
# do NMS | |
dets = np.hstack((boxes, scores[:, np.newaxis])).astype(np.float32, copy=False) | |
keep = py_cpu_nms(dets, nms_threshold) | |
# keep = nms(dets, nms_threshold,force_cpu=args.cpu) | |
dets = dets[keep, :] | |
landms = landms[keep] | |
# keep top-K faster NMS | |
dets = dets[:keep_top_k, :] | |
landms = landms[:keep_top_k, :] | |
# sort faces(delete) | |
''' | |
fscores = [det[4] for det in dets] | |
sorted_idx = sorted(range(len(fscores)), key=lambda k:fscores[k], reverse=False) # sort index | |
tmp = [landms[idx] for idx in sorted_idx] | |
landms = np.asarray(tmp) | |
''' | |
landms = landms.reshape((-1, 5, 2)) | |
landms = landms.transpose((0, 2, 1)) | |
landms = landms.reshape(-1, 10, ) | |
return dets/ss, landms/ss | |