import gradio as gr import numpy as np from PIL import Image import torch import pandas as pd from transformers import AutoImageProcessor, AutoModelForObjectDetection, AutoProcessor, Pix2StructForConditionalGeneration import torch from io import StringIO device="cpu" MAX_PATCHES = 1024 MAX_NEW_TOKENS = 1024 TABLE_THRESHOLD = 0.9 TABLE_PADDING = 5 # Detection related table_detr_processor = AutoImageProcessor.from_pretrained("microsoft/table-transformer-detection") table_detr_model = AutoModelForObjectDetection.from_pretrained("microsoft/table-transformer-detection", revision="no_timm") table_detr_model.to(device) table_detr_model.eval() no_table_found = Image.open("app_assets/no_table_found.png") # Recognition related table_recog_processor = AutoProcessor.from_pretrained("KennethTM/pix2struct-base-table2html") table_recog_model = Pix2StructForConditionalGeneration.from_pretrained("KennethTM/pix2struct-base-table2html") table_recog_model.to(device) table_recog_model.eval() def table_detection(image, threshold=TABLE_THRESHOLD): inputs = table_detr_processor(images=image, return_tensors="pt") inputs = {k: v.to(device) for k, v in inputs.items()} with torch.inference_mode(): outputs = table_detr_model(**inputs) target_sizes = torch.tensor([image.size[::-1]]) results = table_detr_processor.post_process_object_detection(outputs, threshold=threshold, target_sizes=target_sizes) table_boxes = [i for i in results[0]["boxes"]] tables = [] if len(table_boxes) == 0: tables.append(no_table_found) else: padding = TABLE_PADDING for box in table_boxes: box = [int(i) for i in box] box[0] = max(0, box[0]-padding) box[1] = max(0, box[1]-padding) box[2] = min(image.width, box[2]+padding) box[3] = min(image.height, box[3]+padding) tables.append(image.crop(box)) return tables def table_recognition(image, max_new_tokens = MAX_NEW_TOKENS): encoding = table_recog_processor(image, return_tensors="pt", max_patches=MAX_PATCHES) with torch.inference_mode(): flattened_patches = encoding.pop("flattened_patches").to(device) attention_mask = encoding.pop("attention_mask").to(device) predictions = table_recog_model.generate(flattened_patches=flattened_patches, attention_mask=attention_mask, max_new_tokens=max_new_tokens) predictions_decoded = table_recog_processor.tokenizer.batch_decode(predictions, skip_special_tokens=True) table_html = predictions_decoded[0] return table_html def table_recognition_outputs(image): # Table to HTML table_html = table_recognition(image) # Write HTML to files with open("table.html", "w") as file: file.write(table_html) df = pd.read_html(StringIO(table_html))[0] df.to_csv("table.csv", index=False) return [table_html, gr.DownloadButton("Download HTML", value="table.html", visible=True), gr.DownloadButton("Download CSV", value="table.csv", visible=True)] demo_detection = [ "app_assets/example_one_table.jpg", "app_assets/example_two_tables.jpg", ] demo_recognition = [ "app_assets/example_recog_1.jpg", "app_assets/example_recog_2.jpg", ] with gr.Blocks() as demo: with gr.Tab("Recognition"): gr.Markdown("# Table recognition") gr.Markdown("This model ([KennethTM/pix2struct-base-table2html](https://huggingface.co/KennethTM/pix2struct-base-table2html)) converts an image of a table to HTML format and is finetuned from [Pix2Struct base model](https://huggingface.co/google/pix2struct-base).") gr.Markdown("The model expects an image containing only a table. If the table is embedded in a document, first use the detection model in the 'Detection' tab.") gr.Markdown("*Note that recognition model inference is slow on CPU (a few minutes), please be patient*") with gr.Row(): with gr.Column(): input_table = gr.Image(type="pil", label="Table", show_label=True, scale=1) with gr.Column(): output_html = gr.HTML(label="Table (HTML format)", show_label=False) with gr.Row(): download_html = gr.DownloadButton(visible=False) download_csv = gr.DownloadButton(visible=False) with gr.Row(): examples = gr.Examples(demo_recognition, input_table, cache_examples=False, label="Example tables (MMTab dataset)") input_table.change(fn=table_recognition_outputs, inputs=input_table, outputs=[output_html, download_html, download_csv]) with gr.Tab("Detection"): gr.Markdown("# Table detection") gr.Markdown("This model detect tables in a document image with [Microsoft's Table Transformer model](https://huggingface.co/microsoft/table-transformer-detection).") gr.Markdown("Use the detection to find tables, download the results and use as input for table recognition in the 'Recognition' tab.") with gr.Row(): with gr.Column(): input_image = gr.Image(type="pil", label="Document", show_label=True, scale=1) with gr.Column(): output_gallery = gr.Gallery(type="pil", label="Tables", show_label=True, scale=1, format="png") with gr.Row(): examples = gr.Examples(demo_detection, input_image, cache_examples=False, label="Example documents (PubTabNet dataset)") input_image.change(fn=table_detection, inputs=input_image, outputs=output_gallery) demo.launch()