Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -216,20 +216,20 @@ def generate_answer_text_davinci_003(question, openAI_key):
|
|
216 |
|
217 |
|
218 |
# pre-defined questions
|
219 |
-
questions = [
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
|
234 |
# =============================================================================
|
235 |
CACHE_TIME = 60 * 60 * 6 # 6 hours
|
@@ -300,60 +300,12 @@ def return_recommendations(url):
|
|
300 |
|
301 |
recommender = SemanticSearch()
|
302 |
|
303 |
-
# title = 'PDF GPT Turbo'
|
304 |
-
# description = """ PDF GPT Turbo allows you to chat with your PDF files. It uses Google's Universal Sentence Encoder with Deep averaging network (DAN) to give hallucination free response by improving the embedding quality of OpenAI. It cites the page number in square brackets([Page No.]) and shows where the information is located, adding credibility to the responses."""
|
305 |
-
#
|
306 |
-
# with gr.Blocks(css="""#chatbot { font-size: 14px; min-height: 1200; }""") as demo:
|
307 |
-
# gr.Markdown(f'<center><h3>{title}</h3></center>')
|
308 |
-
# gr.Markdown(description)
|
309 |
-
#
|
310 |
-
# with gr.Row():
|
311 |
-
# with gr.Group():
|
312 |
-
# gr.Markdown(
|
313 |
-
# f'<p style="text-align:center">Get your Open AI API key <a href="https://platform.openai.com/account/api-keys">here</a></p>')
|
314 |
-
# with gr.Accordion("API Key"):
|
315 |
-
# openAI_key = gr.Textbox(label='Enter your OpenAI API key here', password=True)
|
316 |
-
# url = gr.Textbox(label='Enter PDF URL here (Example: https://arxiv.org/pdf/1706.03762.pdf )')
|
317 |
-
# gr.Markdown("<center><h4>OR<h4></center>")
|
318 |
-
# file = gr.File(label='Upload your PDF/ Research Paper / Book here', file_types=['.pdf'])
|
319 |
-
# question = gr.Textbox(label='Enter your question here')
|
320 |
-
# gr.Examples(
|
321 |
-
# [[q] for q in questions],
|
322 |
-
# inputs=[question],
|
323 |
-
# label="PRE-DEFINED QUESTIONS: Click on a question to auto-fill the input box, then press Enter!",
|
324 |
-
# )
|
325 |
-
# model = gr.Radio([
|
326 |
-
# 'gpt-3.5-turbo',
|
327 |
-
# 'gpt-3.5-turbo-16k',
|
328 |
-
# 'gpt-3.5-turbo-0613',
|
329 |
-
# 'gpt-3.5-turbo-16k-0613',
|
330 |
-
# 'text-davinci-003',
|
331 |
-
# 'gpt-4',
|
332 |
-
# 'gpt-4-32k'
|
333 |
-
# ], label='Select Model', default='gpt-3.5-turbo')
|
334 |
-
# btn = gr.Button(value='Submit')
|
335 |
-
#
|
336 |
-
# btn.style(full_width=True)
|
337 |
-
#
|
338 |
-
# with gr.Group():
|
339 |
-
# chatbot = gr.Chatbot(placeholder="Chat History", label="Chat History", lines=50, elem_id="chatbot")
|
340 |
-
#
|
341 |
-
# #
|
342 |
-
# # Bind the click event of the button to the question_answer function
|
343 |
-
# btn.click(
|
344 |
-
# question_answer,
|
345 |
-
# inputs=[chatbot, url, file, question, openAI_key, model],
|
346 |
-
# outputs=[chatbot],
|
347 |
-
# )
|
348 |
-
#
|
349 |
-
# demo.launch()
|
350 |
|
351 |
# 第一个文件的内容
|
352 |
-
title_1 = "
|
353 |
description_1 = (
|
354 |
-
"
|
355 |
-
"
|
356 |
-
" yet if they are new or have not been indexed by Semantic Scholar."
|
357 |
)
|
358 |
examples_1 = [
|
359 |
"https://huggingface.co/papers/2309.12307",
|
@@ -361,14 +313,13 @@ examples_1 = [
|
|
361 |
]
|
362 |
|
363 |
# 第二个文件的内容
|
364 |
-
title_2 = "
|
365 |
description_2 = (
|
366 |
-
"
|
|
|
367 |
)
|
368 |
|
369 |
with gr.Blocks() as tab1:
|
370 |
-
gr.Markdown(f'<center><h3>{title_1}</h3></center>')
|
371 |
-
gr.Markdown(description_1)
|
372 |
interface = gr.Interface(
|
373 |
return_recommendations,
|
374 |
gr.Textbox(lines=1),
|
@@ -383,17 +334,17 @@ with gr.Blocks() as tab2:
|
|
383 |
gr.Markdown(description_2)
|
384 |
with gr.Row():
|
385 |
with gr.Group():
|
386 |
-
gr.Markdown(f'<p style="text-align:center"
|
387 |
with gr.Accordion("API Key"):
|
388 |
-
openAI_key = gr.Textbox(label='
|
389 |
-
url = gr.Textbox(label='
|
390 |
gr.Markdown("<center><h4>OR<h4></center>")
|
391 |
-
file = gr.File(label='
|
392 |
-
question = gr.Textbox(label='
|
393 |
gr.Examples(
|
394 |
[[q] for q in questions],
|
395 |
inputs=[question],
|
396 |
-
label="
|
397 |
)
|
398 |
model = gr.Radio([
|
399 |
'gpt-3.5-turbo',
|
@@ -404,7 +355,7 @@ with gr.Blocks() as tab2:
|
|
404 |
'gpt-4',
|
405 |
'gpt-4-32k'
|
406 |
], label='Select Model')
|
407 |
-
btn = gr.Button(value='
|
408 |
|
409 |
|
410 |
with gr.Group():
|
@@ -419,5 +370,5 @@ with gr.Blocks() as tab2:
|
|
419 |
)
|
420 |
|
421 |
# 将两个界面放入一个 Tab 应用中
|
422 |
-
demo = gr.TabbedInterface([tab1, tab2], ["
|
423 |
demo.launch()
|
|
|
216 |
|
217 |
|
218 |
# pre-defined questions
|
219 |
+
questions = ["这项研究调查了什么?",
|
220 |
+
"你能提供这篇论文的摘要吗?",
|
221 |
+
"这项研究使用了哪些方法论?",
|
222 |
+
"这项研究使用了哪些数据间隔?请告诉我开始日期和结束日期?",
|
223 |
+
"这项研究的主要局限性是什么?",
|
224 |
+
"这项研究的主要缺点是什么?",
|
225 |
+
"这项研究的主要发现是什么?",
|
226 |
+
"这项研究的主要结果是什么?",
|
227 |
+
"这项研究的主要贡献是什么?",
|
228 |
+
"这篇论文的结论是什么?",
|
229 |
+
"这项研究中使用了哪些输入特征?",
|
230 |
+
"这项研究中的因变量是什么?",
|
231 |
+
]
|
232 |
+
|
233 |
|
234 |
# =============================================================================
|
235 |
CACHE_TIME = 60 * 60 * 6 # 6 hours
|
|
|
300 |
|
301 |
recommender = SemanticSearch()
|
302 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
303 |
|
304 |
# 第一个文件的内容
|
305 |
+
title_1 = "相关文献导航系统"
|
306 |
description_1 = (
|
307 |
+
"将一篇论文的链接粘贴到下方方框处,然后从文献导航系统获取类似论文的推荐。"
|
308 |
+
"注意:如果论文是新的或尚未被文献导航系统索引,可能无法推荐。"
|
|
|
309 |
)
|
310 |
examples_1 = [
|
311 |
"https://huggingface.co/papers/2309.12307",
|
|
|
313 |
]
|
314 |
|
315 |
# 第二个文件的内容
|
316 |
+
title_2 = "论文解读系统"
|
317 |
description_2 = (
|
318 |
+
"论文解读系统允许你与你的 PDF 文件进行对话。它使用谷歌的通用句子编码器和深度平均网络(DAN)来提供无幻觉的响应,通过提高 OpenAI 的嵌入质量。"
|
319 |
+
"它在方括号中注明页码([页码]),并显示信息的位置,增加了回应的可信度。"
|
320 |
)
|
321 |
|
322 |
with gr.Blocks() as tab1:
|
|
|
|
|
323 |
interface = gr.Interface(
|
324 |
return_recommendations,
|
325 |
gr.Textbox(lines=1),
|
|
|
334 |
gr.Markdown(description_2)
|
335 |
with gr.Row():
|
336 |
with gr.Group():
|
337 |
+
gr.Markdown(f'<p style="text-align:center">获取你的Open AI API key <a href="https://platform.openai.com/account/api-keys">here</a></p>')
|
338 |
with gr.Accordion("API Key"):
|
339 |
+
openAI_key = gr.Textbox(label='在这里输入您的API key(老师如果需要测试,可以先用我的key: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)')
|
340 |
+
url = gr.Textbox(label='输入pdf链接 (Example: https://arxiv.org/pdf/1706.03762.pdf )')
|
341 |
gr.Markdown("<center><h4>OR<h4></center>")
|
342 |
+
file = gr.File(label='在这里上传您的文件', file_types=['.pdf'])
|
343 |
+
question = gr.Textbox(label='输入您的问题')
|
344 |
gr.Examples(
|
345 |
[[q] for q in questions],
|
346 |
inputs=[question],
|
347 |
+
label="您可能想问?",
|
348 |
)
|
349 |
model = gr.Radio([
|
350 |
'gpt-3.5-turbo',
|
|
|
355 |
'gpt-4',
|
356 |
'gpt-4-32k'
|
357 |
], label='Select Model')
|
358 |
+
btn = gr.Button(value='提交')
|
359 |
|
360 |
|
361 |
with gr.Group():
|
|
|
370 |
)
|
371 |
|
372 |
# 将两个界面放入一个 Tab 应用中
|
373 |
+
demo = gr.TabbedInterface([tab1, tab2], ["相关文献导航系统", "论文解读系统"])
|
374 |
demo.launch()
|