Spaces:
Runtime error
Runtime error
import gradio as gr | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
from PIL import Image | |
import re | |
import copy | |
import secrets | |
from pathlib import Path | |
import os | |
os.system("pip install git+https://github.com/openai/whisper.git") | |
import whisper | |
model_whisper = whisper.load_model("small") | |
# Constants | |
BOX_TAG_PATTERN = r"<box>([\s\S]*?)</box>" | |
PUNCTUATION = "!\"#$%&'()*+,-./:;<=>?@[\\]^_`{|}~" | |
# Initialize model and tokenizer | |
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen-VL-Chat-Int4", trust_remote_code=True) | |
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen-VL-Chat-Int4", device_map="auto", trust_remote_code=True).eval() | |
def format_text(text): | |
"""Format text for rendering in the chat UI.""" | |
lines = text.split("\n") | |
lines = [line for line in lines if line != ""] | |
count = 0 | |
for i, line in enumerate(lines): | |
if "```" in line: | |
count += 1 | |
items = line.split("`") | |
if count % 2 == 1: | |
lines[i] = f'<pre><code class="language-{items[-1]}">' | |
else: | |
lines[i] = f"<br></code></pre>" | |
else: | |
if i > 0: | |
if count % 2 == 1: | |
line = line.replace("`", r"\`") | |
line = line.replace("<", "<") | |
line = line.replace(">", ">") | |
line = line.replace(" ", " ") | |
line = line.replace("*", "*") | |
line = line.replace("_", "_") | |
line = line.replace("-", "-") | |
line = line.replace(".", ".") | |
line = line.replace("!", "!") | |
line = line.replace("(", "(") | |
line = line.replace(")", ")") | |
line = line.replace("$", "$") | |
lines[i] = "<br>" + line | |
text = "".join(lines) | |
return text | |
def transcribe_audio(audio): | |
audio = whisper.load_audio(audio) | |
audio = whisper.pad_or_trim(audio) | |
mel = whisper.log_mel_spectrogram(audio).to(model_whisper.device) | |
_, probs = model_whisper.detect_language(mel) | |
options = whisper.DecodingOptions(fp16 = False) | |
result = whisper.decode(model_whisper, mel, options) | |
return result.text | |
def get_chat_response(chatbot, task_history): | |
global model, tokenizer | |
chat_query = chatbot[-1][0] | |
query = task_history[-1][0] | |
history_cp = copy.deepcopy(task_history) | |
full_response = "" | |
history_filter = [] | |
pic_idx = 1 | |
pre = "" | |
for i, (q, a) in enumerate(history_cp): | |
if isinstance(q, (tuple, list)): | |
q = f'Picture {pic_idx}: <img>{q[0]}</img>' | |
pre += q + '\n' | |
pic_idx += 1 | |
else: | |
pre += q | |
history_filter.append((pre, a)) | |
pre = "" | |
history, message = history_filter[:-1], history_filter[-1][0] | |
response, history = model.chat(tokenizer, message, history=history) | |
image = tokenizer.draw_bbox_on_latest_picture(response, history) | |
if image is not None: | |
temp_dir = secrets.token_hex(20) | |
temp_dir = Path("/tmp") / temp_dir | |
temp_dir.mkdir(exist_ok=True, parents=True) | |
name = f"tmp{secrets.token_hex(5)}.jpg" | |
filename = temp_dir / name | |
image.save(str(filename)) | |
chatbot[-1] = (format_text(chat_query), (str(filename),)) # Hier verwenden wir format_text statt _parse_text | |
chat_response = response.replace("<ref>", "") | |
chat_response = chat_response.replace(r"</ref>", "") | |
chat_response = re.sub(BOX_TAG_PATTERN, "", chat_response) | |
if chat_response != "": | |
chatbot.append((None, chat_response)) | |
else: | |
chatbot[-1] = (format_text(chat_query), response) | |
full_response = format_text(response) | |
task_history[-1] = (query, full_response) | |
return chatbot | |
def handle_text_input(history, task_history, text): | |
"""Handle text input from the user.""" | |
task_text = text | |
if len(text) >= 2 and text[-1] in PUNCTUATION and text[-2] not in PUNCTUATION: | |
task_text = text[:-1] | |
history = history + [(format_text(text), None)] | |
task_history = task_history + [(task_text, None)] | |
return history, task_history, "" | |
def handle_file_upload(history, task_history, file): | |
"""Handle file upload from the user.""" | |
history = history + [((file.name,), None)] | |
task_history = task_history + [((file.name,), None)] | |
return history, task_history | |
def clear_input(): | |
"""Clear the user input.""" | |
return gr.update(value="") | |
def clear_history(task_history): | |
"""Clear the chat history.""" | |
task_history.clear() | |
return [] | |
def handle_regeneration(chatbot, task_history): | |
"""Handle the regeneration of the last response.""" | |
print("Regenerate clicked") | |
print("Before:", task_history, chatbot) | |
if not task_history: | |
return chatbot | |
item = task_history[-1] | |
if item[1] is None: | |
return chatbot | |
task_history[-1] = (item[0], None) | |
chatbot_item = chatbot.pop(-1) | |
if chatbot_item[0] is None: | |
chatbot[-1] = (chatbot[-1][0], None) | |
else: | |
chatbot.append((chatbot_item[0], None)) | |
print("After:", task_history, chatbot) | |
return get_chat_response(chatbot, task_history) | |
with gr.Blocks(theme='gradio/soft') as demo: | |
audio = gr.Audio( | |
label="Input Audio", | |
show_label=False, | |
source="microphone", | |
type="filepath" | |
) | |
gr.Markdown("# Qwen-VL Multimodal-Vision-Insight") | |
gr.Markdown( | |
"## Developed by Keyvan Hardani (Keyvven on [Twitter](https://twitter.com/Keyvven))\n" | |
"Special thanks to [@Artificialguybr](https://twitter.com/artificialguybr) for the inspiration from his code.\n" | |
"### Qwen-VL: A Multimodal Large Vision Language Model by Alibaba Cloud\n" | |
) | |
chatbot = gr.Chatbot(label='Qwen-VL-Chat', elem_classes="control-height", height=520) | |
query = gr.Textbox(lines=2, label='Input') | |
task_history = gr.State([]) | |
with gr.Row(): | |
with gr.Column(width=4): | |
upload_btn = gr.UploadButton("π Upload", file_types=["image"], elem_classes="control-width") | |
with gr.Column(width=2): | |
submit_btn = gr.Button("π Submit", elem_classes="control-width") | |
with gr.Column(width=2): | |
regen_btn = gr.Button("π€οΈ Regenerate", elem_classes="control-width") | |
with gr.Column(width=2): | |
clear_btn = gr.Button("π§Ή Clear History", elem_classes="control-width") | |
gr.Markdown("### Key Features:\n- **Strong Performance**: Surpasses existing LVLMs on multiple English benchmarks including Zero-shot Captioning and VQA.\n- **Multi-lingual Support**: Supports English, Chinese, and multi-lingual conversation.\n- **High Resolution**: Utilizes 448*448 resolution for fine-grained recognition and understanding.") | |
submit_btn.click(handle_text_input, [chatbot, task_history, query], [chatbot, task_history]).then( | |
get_chat_response, [chatbot, task_history], [chatbot], show_progress=True | |
) | |
submit_btn.click(clear_input, [], [query]) | |
clear_btn.click(clear_history, [task_history], [chatbot], show_progress=True) | |
regen_btn.click(handle_regeneration, [chatbot, task_history], [chatbot], show_progress=True) | |
upload_btn.upload(handle_file_upload, [chatbot, task_history, upload_btn], [chatbot, task_history], show_progress=True) | |
audio.on_change(transcribe_audio, inputs=[audio], outputs=[query]) | |
demo.launch() | |