Keyven's picture
Update perf.
a076c9d
raw
history blame
6.06 kB
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
from PIL import Image
import re
import copy
import secrets
from pathlib import Path
# Constants
BOX_TAG_PATTERN = r"<box>([\s\S]*?)</box>"
PUNCTUATION = "!\"#$%&'()*+,-./:;<=>?@[\\]^_`{|}~"
# Initialize model and tokenizer
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen-VL-Chat-Int4", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen-VL-Chat-Int4", device_map="auto", trust_remote_code=True).eval()
def format_text(text):
"""Format text for rendering in the chat UI."""
lines = text.split("\n")
lines = [line for line in lines if line != ""]
count = 0
for i, line in enumerate(lines):
if "```" in line:
count += 1
items = line.split("`")
if count % 2 == 1:
lines[i] = f'<pre><code class="language-{items[-1]}">'
else:
lines[i] = f"<br></code></pre>"
else:
if i > 0:
if count % 2 == 1:
line = line.replace("`", r"\`")
line = line.replace("<", "&lt;")
line = line.replace(">", "&gt;")
line = line.replace(" ", "&nbsp;")
line = line.replace("*", "&ast;")
line = line.replace("_", "&lowbar;")
line = line.replace("-", "&#45;")
line = line.replace(".", "&#46;")
line = line.replace("!", "&#33;")
line = line.replace("(", "&#40;")
line = line.replace(")", "&#41;")
line = line.replace("$", "&#36;")
lines[i] = "<br>" + line
text = "".join(lines)
return text
def get_chat_response(chatbot, task_history):
"""Generate a response using the model."""
chat_query = chatbot[-1][0]
query = task_history[-1][0]
history_cp = copy.deepcopy(task_history)
full_response = ""
history_filter = []
pic_idx = 1
pre = ""
for i, (q, a) in enumerate(history_cp):
if isinstance(q, (tuple, list)):
q = f'Picture {pic_idx}: <img>{q[0]}</img>'
pre += q + '\n'
pic_idx += 1
else:
pre += q
history_filter.append((pre, a))
pre = ""
history, message = history_filter[:-1], history_filter[-1][0]
inputs = tokenizer.encode_plus(message, return_tensors='pt')
outputs = model.generate(inputs['input_ids'], max_length=150, num_beams=4, length_penalty=2.0, early_stopping=True)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
task_history.append((message, response))
chatbot.append((format_text(message), format_text(response)))
return chatbot, task_history
def handle_text_input(history, task_history, text):
"""Handle text input from the user."""
task_text = text
if len(text) >= 2 and text[-1] in PUNCTUATION and text[-2] not in PUNCTUATION:
task_text = text[:-1]
history = history + [(format_text(text), None)]
task_history = task_history + [(task_text, None)]
return history, task_history, ""
def handle_file_upload(history, task_history, file):
"""Handle file upload from the user."""
history = history + [((file.name,), None)]
task_history = task_history + [((file.name,), None)]
return history, task_history
def clear_input():
"""Clear the user input."""
return gr.update(value="")
def clear_history(task_history):
"""Clear the chat history."""
task_history.clear()
return []
def handle_regeneration(chatbot, task_history):
"""Handle the regeneration of the last response."""
print("Regenerate clicked")
print("Before:", task_history, chatbot)
if not task_history:
return chatbot
item = task_history[-1]
if item[1] is None:
return chatbot
task_history[-1] = (item[0], None)
chatbot_item = chatbot.pop(-1)
if chatbot_item[0] is None:
chatbot[-1] = (chatbot[-1][0], None)
else:
chatbot.append((chatbot_item[0], None))
print("After:", task_history, chatbot)
return get_chat_response(chatbot, task_history)
# Custom CSS
css = '''
.gradio-container {
max-width: 800px !important;
}
'''
with gr.Blocks(css=css) as demo:
gr.Markdown("# Qwen-VL-Chat Bot")
gr.Markdown(
"## Developed by Keyvan Hardani (Keyvven on [Twitter](https://twitter.com/Keyvven))\n"
"Special thanks to [@Artificialguybr](https://twitter.com/artificialguybr) for the inspiration from his code.\n"
"### Qwen-VL: A Multimodal Large Vision Language Model by Alibaba Cloud\n"
)
chatbot = gr.Chatbot(label='Qwen-VL-Chat', elem_classes="control-height", height=520)
query = gr.Textbox(lines=2, label='Input')
task_history = gr.State([])
with gr.Row():
upload_btn = gr.UploadButton("πŸ“ Upload", file_types=["image"])
submit_btn = gr.Button("πŸš€ Submit")
regen_btn = gr.Button("πŸ€”οΈ Regenerate")
clear_btn = gr.Button("🧹 Clear History")
gr.Markdown("### Key Features:\n- **Strong Performance**: Surpasses existing LVLMs on multiple English benchmarks including Zero-shot Captioning and VQA.\n- **Multi-lingual Support**: Supports English, Chinese, and multi-lingual conversation.\n- **High Resolution**: Utilizes 448*448 resolution for fine-grained recognition and understanding.")
submit_btn.click(handle_text_input, [chatbot, task_history, query], [chatbot, task_history]).then(
get_chat_response, [chatbot, task_history], [chatbot], show_progress=True
)
submit_btn.click(clear_input, [], [query])
clear_btn.click(clear_history, [task_history], [chatbot], show_progress=True)
regen_btn.click(handle_regeneration, [chatbot, task_history], [chatbot], show_progress=True)
upload_btn.upload(handle_file_upload, [chatbot, task_history, upload_btn], [chatbot, task_history], show_progress=True)
demo.launch(share=True)