import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
from PIL import Image
import re
import copy
import secrets
from pathlib import Path
# Constants
BOX_TAG_PATTERN = r"([\s\S]*?)"
PUNCTUATION = "!\"#$%&'()*+,-./:;<=>?@[\\]^_`{|}~"
# Initialize model and tokenizer
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen-VL-Chat-Int4", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen-VL-Chat-Int4", device_map="auto", trust_remote_code=True).eval()
def format_text(text):
"""Format text for rendering in the chat UI."""
lines = text.split("\n")
lines = [line for line in lines if line != ""]
count = 0
for i, line in enumerate(lines):
if "```" in line:
count += 1
items = line.split("`")
if count % 2 == 1:
lines[i] = f'
'
else:
lines[i] = f"
"
else:
if i > 0:
if count % 2 == 1:
line = line.replace("`", r"\`")
line = line.replace("<", "<")
line = line.replace(">", ">")
line = line.replace(" ", " ")
line = line.replace("*", "*")
line = line.replace("_", "_")
line = line.replace("-", "-")
line = line.replace(".", ".")
line = line.replace("!", "!")
line = line.replace("(", "(")
line = line.replace(")", ")")
line = line.replace("$", "$")
lines[i] = "
" + line
text = "".join(lines)
return text
def get_chat_response(chatbot, task_history):
global model, tokenizer
chat_query = chatbot[-1][0]
query = task_history[-1][0]
history_cp = copy.deepcopy(task_history)
full_response = ""
history_filter = []
pic_idx = 1
pre = ""
for i, (q, a) in enumerate(history_cp):
if isinstance(q, (tuple, list)):
q = f'Picture {pic_idx}: {q[0]}'
pre += q + '\n'
pic_idx += 1
else:
pre += q
history_filter.append((pre, a))
pre = ""
history, message = history_filter[:-1], history_filter[-1][0]
response, history = model.chat(tokenizer, message, history=history)
image = tokenizer.draw_bbox_on_latest_picture(response, history)
if image is not None:
temp_dir = secrets.token_hex(20)
temp_dir = Path("/tmp") / temp_dir
temp_dir.mkdir(exist_ok=True, parents=True)
name = f"tmp{secrets.token_hex(5)}.jpg"
filename = temp_dir / name
image.save(str(filename))
chatbot[-1] = (format_text(chat_query), (str(filename),)) # Hier verwenden wir format_text statt _parse_text
chat_response = response.replace("[", "")
chat_response = chat_response.replace(r"]", "")
chat_response = re.sub(BOX_TAG_PATTERN, "", chat_response)
if chat_response != "":
chatbot.append((None, chat_response))
else:
chatbot[-1] = (format_text(chat_query), response)
full_response = format_text(response)
task_history[-1] = (query, full_response)
return chatbot
def handle_text_input(history, task_history, text):
"""Handle text input from the user."""
task_text = text
if len(text) >= 2 and text[-1] in PUNCTUATION and text[-2] not in PUNCTUATION:
task_text = text[:-1]
history = history + [(format_text(text), None)]
task_history = task_history + [(task_text, None)]
return history, task_history, ""
def handle_file_upload(history, task_history, file):
"""Handle file upload from the user."""
history = history + [((file.name,), None)]
task_history = task_history + [((file.name,), None)]
return history, task_history
def clear_input():
"""Clear the user input."""
return gr.update(value="")
def clear_history(task_history):
"""Clear the chat history."""
task_history.clear()
return []
def handle_regeneration(chatbot, task_history):
"""Handle the regeneration of the last response."""
print("Regenerate clicked")
print("Before:", task_history, chatbot)
if not task_history:
return chatbot
item = task_history[-1]
if item[1] is None:
return chatbot
task_history[-1] = (item[0], None)
chatbot_item = chatbot.pop(-1)
if chatbot_item[0] is None:
chatbot[-1] = (chatbot[-1][0], None)
else:
chatbot.append((chatbot_item[0], None))
print("After:", task_history, chatbot)
return get_chat_response(chatbot, task_history)
with gr.Blocks(theme='gradio/soft') as demo:
gr.Markdown("# Qwen-VL Multimodal-Vision-Insight")
gr.Markdown(
"## Developed by Keyvan Hardani (Keyvven on [Twitter](https://twitter.com/Keyvven))\n"
"Special thanks to [@Artificialguybr](https://twitter.com/artificialguybr) for the inspiration from his code.\n"
"### Qwen-VL: A Multimodal Large Vision Language Model by Alibaba Cloud\n"
)
chatbot = gr.Chatbot([("Hello", "Hi"), ("Describe the image", "I can describe images. Please upload one.")], label='Qwen-VL-Chat', elem_classes="control-height", height=520)
gr.Markdown(
"### Chat with Qwen-VL\n"
"You can ask questions or make statements in the chat input below. "
"You can also upload an image and ask questions about it like "
"'Describe this image', 'What can you see in this image?', or "
"'Explain what's happening in this image'."
)
with gr.Row(): # Erste Zeile fรผr Eingabefelder
with gr.Column(width=6):
query = gr.Textbox(
lines=2,
label='Chat Input',
placeholder='Type your question or statement here, or upload an image and ask about it...',
hint='E.g., "Describe this image" or "What is the capital of France?"'
)
task_history = gr.State([])
with gr.Column(width=6):
upload_btn = gr.File(label="๐ผ๏ธ Upload", file_types=["image"], elem_classes="control-width")
with gr.Row():
with gr.Column(width=6):
submit_btn = gr.Button("๐ Submit", elem_classes="control-width", variant="primary")
with gr.Column(width=3):
regen_btn = gr.Button("๐ Regenerate", elem_classes="control-width")
with gr.Column(width=3):
clear_btn = gr.Button("๐งน Clear History", elem_classes="control-width", variant="secondary")
gr.Markdown("### Key Features:\n- **Strong Performance**: Surpasses existing LVLMs on multiple English benchmarks including Zero-shot Captioning and VQA.\n- **Multi-lingual Support**: Supports English, Chinese, and multi-lingual conversation.\n- **High Resolution**: Utilizes 448*448 resolution for fine-grained recognition and understanding.")
submit_btn.click(handle_text_input, [chatbot, task_history, query], [chatbot, task_history]).then(
get_chat_response, [chatbot, task_history], [chatbot], show_progress=True
)
submit_btn.click(clear_input, [], [query])
clear_btn.click(clear_history, [task_history], [chatbot], show_progress=True)
regen_btn.click(handle_regeneration, [chatbot, task_history], [chatbot], show_progress=True)
upload_btn.upload(handle_file_upload, [chatbot, task_history, upload_btn], [chatbot, task_history], show_progress=True)
demo.launch()