from flask import Flask, request from transformers import AutoModelForImageClassification from transformers import AutoImageProcessor from PIL import Image from io import BytesIO import os import torch app = Flask(__name__) model = AutoModelForImageClassification.from_pretrained( './myModel') image_processor = AutoImageProcessor.from_pretrained( "google/vit-base-patch16-224-in21k") @app.route('/upload_image', methods=['POST']) def upload_image(): # Get the image file from the request image_file = request.files['image'].stream # image = Image.open(BytesIO(image_file.read())) image = Image.open(image_file) inputs = image_processor(image, return_tensors="pt") with torch.no_grad(): logits = model(**inputs).logits predicted_label = logits.argmax(-1).item() disease = model.config.id2label[predicted_label] # You can perform additional operations with the image here # ... return disease @app.route('/', methods=['GET']) def hi(): return "NAPTAH Mobile Application" app.run(host='0.0.0.0', port=7860)