Spaces:
Running
Running
File size: 6,181 Bytes
1ec2047 d3ffa5e 88fc169 1ec2047 88fc169 66b33d0 88fc169 66b33d0 1ec2047 88fc169 66b33d0 88fc169 1ec2047 3e93048 1ec2047 3e93048 1ec2047 3e93048 66b33d0 ebdfef4 66b33d0 ebdfef4 66b33d0 ebdfef4 1ec2047 88fc169 1ec2047 88fc169 1ec2047 d3ffa5e 1ec2047 88fc169 1ec2047 d3ffa5e 1ec2047 d3ffa5e 1ec2047 88fc169 1ec2047 88fc169 1ec2047 eb0271e 66b33d0 1ec2047 ebdfef4 66b33d0 4fde3b2 66b33d0 4fde3b2 66b33d0 eb0271e 4295e67 1ec2047 4295e67 1ec2047 2242886 1ec2047 2242886 0ae0f4d ebdfef4 0ae0f4d 2242886 ebdfef4 88fc169 eb0271e 1ec2047 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 |
import json
import subprocess
import time
from llama_cpp import Llama
from llama_cpp_agent import LlamaCppAgent, MessagesFormatterType
from llama_cpp_agent.providers import LlamaCppPythonProvider
from llama_cpp_agent.chat_history import BasicChatHistory
from llama_cpp_agent.chat_history.messages import Roles
import gradio as gr
from huggingface_hub import hf_hub_download
llm = None
llm_model = None
# Download the new model
hf_hub_download(
repo_id="hugging-quants/Llama-3.2-1B-Instruct-Q4_K_M-GGUF",
filename="llama-3.2-1b-instruct-q4_k_m.gguf",
local_dir="./models"
)
def get_messages_formatter_type(model_name):
return MessagesFormatterType.LLAMA_3
def respond(
message,
history: list[tuple[str, str]],
model,
system_message,
max_tokens,
temperature,
top_p,
top_k,
repeat_penalty,
):
global llm
global llm_model
chat_template = get_messages_formatter_type(model)
if llm is None or llm_model != model:
llm = Llama(
model_path=f"models/{model}",
n_gpu_layers=0, # Adjust based on your GPU
n_batch=32398, # Adjust based on your RAM
n_ctx=512, # Adjust based on your RAM and desired context length
)
llm_model = model
provider = LlamaCppPythonProvider(llm)
agent = LlamaCppAgent(
provider,
system_prompt=f"{system_message}",
predefined_messages_formatter_type=chat_template,
debug_output=True
)
settings = provider.get_provider_default_settings()
settings.temperature = temperature
settings.top_k = top_k
settings.top_p = top_p
settings.max_tokens = max_tokens
settings.repeat_penalty = repeat_penalty
settings.stream = True
messages = BasicChatHistory()
for msn in history:
user = {
'role': Roles.user,
'content': msn[0]
}
assistant = {
'role': Roles.assistant,
'content': msn[1]
}
messages.add_message(user)
messages.add_message(assistant)
start_time = time.time()
token_count = 0
stream = agent.get_chat_response(
message,
llm_sampling_settings=settings,
chat_history=messages,
returns_streaming_generator=True,
print_output=False
)
outputs = ""
for output in stream:
outputs += output
token_count += len(output.split())
yield outputs
end_time = time.time()
latency = end_time - start_time
speed = token_count / (end_time - start_time)
print(f"Latency: {latency} seconds")
print(f"Speed: {speed} tokens/second")
description = """<p><center>
<a href="https://huggingface.co/hugging-quants/Llama-3.2-1B-Instruct-Q4_K_M-GGUF" target="_blank">[Meta Llama 3.2 (1B)]</a>
Meta Llama 3.2 (1B) is a multilingual large language model (LLM) optimized for conversational dialogue use cases, including agentic retrieval and summarization tasks. It outperforms many open-source and closed chat models on industry benchmarks, and is intended for commercial and research use in multiple languages.
</center></p>
"""
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Dropdown([
"llama-3.2-1b-instruct-q4_k_m.gguf"
],
value="llama-3.2-1b-instruct-q4_k_m.gguf",
label="Model"
),
gr.TextArea(value="""You are Meta Llama 3.2 (1B), an advanced AI assistant created by Meta. Your capabilities include:
1. Complex reasoning and problem-solving
2. Multilingual understanding and generation
3. Creative and analytical writing
4. Code understanding and generation
5. Task decomposition and step-by-step guidance
6. Summarization and information extraction
Always strive for accuracy, clarity, and helpfulness in your responses. If you're unsure about something, express your uncertainty. Use the following format for your responses:
""", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=2.0,
value=0.9,
step=0.05,
label="Top-p",
),
gr.Slider(
minimum=0,
maximum=100,
value=1,
step=1,
label="Top-k",
),
gr.Slider(
minimum=0.0,
maximum=2.0,
value=1.1,
step=0.1,
label="Repetition penalty",
),
],
theme=gr.themes.Soft(primary_hue="violet", secondary_hue="violet", neutral_hue="gray",font=[gr.themes.GoogleFont("Exo"), "ui-sans-serif", "system-ui", "sans-serif"]).set(
body_background_fill_dark="#16141c",
block_background_fill_dark="#16141c",
block_border_width="1px",
block_title_background_fill_dark="#1e1c26",
input_background_fill_dark="#292733",
button_secondary_background_fill_dark="#24212b",
border_color_accent_dark="#343140",
border_color_primary_dark="#343140",
background_fill_secondary_dark="#16141c",
color_accent_soft_dark="transparent",
code_background_fill_dark="#292733",
),
title="Meta Llama 3.2 (1B)",
description=description,
chatbot=gr.Chatbot(
scale=1,
likeable=True,
show_copy_button=True
),
examples=[
["Hello! Can you introduce yourself?"],
["What's the capital of France?"],
["Can you explain the concept of photosynthesis?"],
["Write a short story about a robot learning to paint."],
["Explain the difference between machine learning and deep learning."],
["Summarize the key points of climate change and its global impact."],
["Explain quantum computing to a 10-year-old."],
["Design a step-by-step meal plan for someone trying to lose weight and build muscle."]
],
cache_examples=False,
autofocus=False,
concurrency_limit=None
)
if __name__ == "__main__":
demo.launch() |