import gradio as gr import spaces from transformers import Qwen2VLForConditionalGeneration, AutoProcessor from qwen_vl_utils import process_vision_info import torch from PIL import Image import subprocess from datetime import datetime import numpy as np import os # Install flash-attn subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True) # Model and Processor Loading (Done once at startup) MODEL_ID = "Qwen/Qwen2-VL-7B-Instruct" model = Qwen2VLForConditionalGeneration.from_pretrained(MODEL_ID, trust_remote_code=True, attn_implementation="flash_attention_2", torch_dtype="auto").cuda().eval() processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True) DESCRIPTION = "[Qwen2-VL-7B Demo](https://huggingface.co/Qwen/Qwen2-VL-7B-Instruct)" # Helper function to save media and return path def save_media_and_get_path(media, media_type): if media is None: gr.Warning(f"No {media_type} provided. Please upload a {media_type} before submitting.") raise ValueError(f"No {media_type} provided.") timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") filename = f"{media_type}_{timestamp}.{'png' if media_type == 'image' else 'mp4'}" media.save(filename) return os.path.abspath(filename) @spaces.GPU def qwen_inference(media, media_type, text_input=None): media_path = save_media_and_get_path(media, media_type) messages = [ { "role": "user", "content": [ { "type": media_type, media_type: media_path, **({"max_pixels": 360 * 420, "fps": 6.0} if media_type == "video" else {}), }, {"type": "text", "text": text_input}, ], } ] text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) image_inputs, video_inputs = process_vision_info(messages) inputs = processor( text=[text], images=image_inputs, videos=video_inputs, padding=True, return_tensors="pt", ).to("cuda") generated_ids = model.generate(**inputs, max_new_tokens=1024) generated_ids_trimmed = [out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)] output_text = processor.batch_decode(generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] return output_text css = """ #output { height: 500px; overflow: auto; border: 1px solid #ccc; } """ with gr.Blocks(css=css) as demo: gr.Markdown(DESCRIPTION) with gr.Tab(label="Image Input"): with gr.Row(): with gr.Column(): input_img = gr.Image(label="Input Picture", type="pil") text_input_image = gr.Textbox(label="Question") submit_btn_image = gr.Button(value="Submit") with gr.Column(): output_text_image = gr.Textbox(label="Output Text") submit_btn_image.click(qwen_inference, [input_img, "image", text_input_image], [output_text_image]) with gr.Tab(label="Video Input"): with gr.Row(): with gr.Column(): input_video = gr.Video(label="Input Video") text_input_video = gr.Textbox(label="Question") submit_btn_video = gr.Button(value="Submit") with gr.Column(): output_text_video = gr.Textbox(label="Output Text") submit_btn_video.click(qwen_inference, [input_video, "video", text_input_video], [output_text_video]) demo.queue(api_open=False) demo.launch(debug=True)