Spaces:
Running
on
Zero
Running
on
Zero
Upload app.py
Browse files
app.py
CHANGED
@@ -1,135 +1,47 @@
|
|
1 |
-
import
|
2 |
-
import
|
3 |
-
import
|
4 |
-
import
|
5 |
-
import
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
)
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
)
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
transcription = pipe(filename)["text"]
|
49 |
-
previous_transcription += transcription
|
50 |
-
|
51 |
-
end_time = time.time()
|
52 |
-
latency = end_time - start_time
|
53 |
-
return previous_transcription, f"{latency:.2f}"
|
54 |
-
except Exception as e:
|
55 |
-
print(f"Error during Transcription: {e}")
|
56 |
-
return previous_transcription, "Error"
|
57 |
-
|
58 |
-
@spaces.GPU
|
59 |
-
def translate_and_transcribe(inputs, previous_transcription, target_language):
|
60 |
-
start_time = time.time()
|
61 |
-
try:
|
62 |
-
filename = f"{uuid.uuid4().hex}.wav"
|
63 |
-
sample_rate, audio_data = inputs
|
64 |
-
scipy.io.wavfile.write(filename, sample_rate, audio_data)
|
65 |
-
|
66 |
-
translation = pipe(filename, generate_kwargs={"task": "translate", "language": target_language} )["text"]
|
67 |
-
|
68 |
-
previous_transcription += translation
|
69 |
-
|
70 |
-
end_time = time.time()
|
71 |
-
latency = end_time - start_time
|
72 |
-
return previous_transcription, f"{latency:.2f}"
|
73 |
-
except Exception as e:
|
74 |
-
print(f"Error during Translation and Transcription: {e}")
|
75 |
-
return previous_transcription, "Error"
|
76 |
-
|
77 |
-
def clear():
|
78 |
-
return ""
|
79 |
-
|
80 |
-
with gr.Blocks() as microphone:
|
81 |
-
with gr.Column():
|
82 |
-
gr.Markdown(f"# Realtime Whisper Large V3 Turbo: \n Transcribe Audio in Realtime. This Demo uses the Checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers.\n Note: The first token takes about 5 seconds. After that, it works flawlessly.")
|
83 |
-
with gr.Row():
|
84 |
-
input_audio_microphone = gr.Audio(streaming=True)
|
85 |
-
output = gr.Textbox(label="Transcription", value="")
|
86 |
-
latency_textbox = gr.Textbox(label="Latency (seconds)", value="0.0", scale=0)
|
87 |
-
with gr.Row():
|
88 |
-
clear_button = gr.Button("Clear Output")
|
89 |
-
|
90 |
-
input_audio_microphone.stream(transcribe, [input_audio_microphone, output], [output, latency_textbox], time_limit=45, stream_every=2, concurrency_limit=None)
|
91 |
-
clear_button.click(clear, outputs=[output])
|
92 |
-
|
93 |
-
with gr.Blocks() as file:
|
94 |
-
with gr.Column():
|
95 |
-
gr.Markdown(f"# Realtime Whisper Large V3 Turbo: \n Transcribe Audio in Realtime. This Demo uses the Checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers.\n Note: The first token takes about 5 seconds. After that, it works flawlessly.")
|
96 |
-
with gr.Row():
|
97 |
-
input_audio_microphone = gr.Audio(sources="upload", type="numpy")
|
98 |
-
output = gr.Textbox(label="Transcription", value="")
|
99 |
-
latency_textbox = gr.Textbox(label="Latency (seconds)", value="0.0", scale=0)
|
100 |
-
with gr.Row():
|
101 |
-
submit_button = gr.Button("Submit")
|
102 |
-
clear_button = gr.Button("Clear Output")
|
103 |
-
|
104 |
-
submit_button.click(transcribe, [input_audio_microphone, output], [output, latency_textbox], concurrency_limit=None)
|
105 |
-
clear_button.click(clear, outputs=[output])
|
106 |
-
|
107 |
-
# with gr.Blocks() as translate:
|
108 |
-
# with gr.Column():
|
109 |
-
# gr.Markdown(f"# Realtime Whisper Large V3 Turbo (Translation): \n Transcribe and Translate Audio in Realtime. This Demo uses the Checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers.\n Note: The first token takes about 5 seconds. After that, it works flawlessly.")
|
110 |
-
# with gr.Row():
|
111 |
-
# input_audio_microphone = gr.Audio(streaming=True)
|
112 |
-
# output = gr.Textbox(label="Transcription and Translation", value="")
|
113 |
-
# latency_textbox = gr.Textbox(label="Latency (seconds)", value="0.0", scale=0)
|
114 |
-
# target_language_dropdown = gr.Dropdown(
|
115 |
-
# choices=["english", "french", "hindi", "spanish", "russian"],
|
116 |
-
# label="Target Language",
|
117 |
-
# value="<|es|>"
|
118 |
-
# )
|
119 |
-
# with gr.Row():
|
120 |
-
# clear_button = gr.Button("Clear Output")
|
121 |
-
|
122 |
-
# input_audio_microphone.stream(
|
123 |
-
# translate_and_transcribe,
|
124 |
-
# [input_audio_microphone, output, target_language_dropdown],
|
125 |
-
# [output, latency_textbox],
|
126 |
-
# time_limit=45,
|
127 |
-
# stream_every=2,
|
128 |
-
# concurrency_limit=None
|
129 |
-
# )
|
130 |
-
# clear_button.click(clear, outputs=[output])
|
131 |
-
|
132 |
-
with gr.Blocks() as demo:
|
133 |
-
gr.TabbedInterface([microphone, file], ["Microphone", "Transcribe from file"])
|
134 |
-
|
135 |
-
demo.launch()
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import easyocr
|
3 |
+
import cv2
|
4 |
+
import numpy as np
|
5 |
+
from PIL import Image
|
6 |
+
|
7 |
+
# Create an EasyOCR Reader
|
8 |
+
reader = easyocr.Reader(['en'])
|
9 |
+
|
10 |
+
|
11 |
+
def process_image(image):
|
12 |
+
# Convert the PIL image to a numpy array (compatible with OpenCV)
|
13 |
+
image_np = np.array(image)
|
14 |
+
|
15 |
+
# Convert the image to RGB (OpenCV loads as BGR, EasyOCR expects RGB)
|
16 |
+
image_rgb = cv2.cvtColor(image_np, cv2.COLOR_BGR2RGB)
|
17 |
+
|
18 |
+
# Use EasyOCR to read text from the image
|
19 |
+
result = reader.readtext(image_rgb)
|
20 |
+
|
21 |
+
# Draw bounding boxes around detected text
|
22 |
+
for (bbox, text, prob) in result:
|
23 |
+
(top_left, top_right, bottom_right, bottom_left) = bbox
|
24 |
+
top_left = tuple(map(int, top_left))
|
25 |
+
bottom_right = tuple(map(int, bottom_right))
|
26 |
+
cv2.rectangle(image_np, top_left, bottom_right, (0, 255, 0), 2)
|
27 |
+
|
28 |
+
# Convert back to RGB for display
|
29 |
+
result_image = Image.fromarray(cv2.cvtColor(image_np, cv2.COLOR_BGR2RGB))
|
30 |
+
|
31 |
+
# Combine detected text and their confidence scores
|
32 |
+
detected_text = "\n".join([f"Detected text: {text}, Confidence: {prob:.2f}" for (_, text, prob) in result])
|
33 |
+
|
34 |
+
return result_image, detected_text
|
35 |
+
|
36 |
+
|
37 |
+
# Gradio Interface
|
38 |
+
interface = gr.Interface(
|
39 |
+
fn=process_image,
|
40 |
+
inputs="image",
|
41 |
+
outputs=["image", "text"],
|
42 |
+
title="OCR with EasyOCR",
|
43 |
+
description="Upload an image, and the system will detect text using EasyOCR and display it."
|
44 |
+
)
|
45 |
+
|
46 |
+
# Launch the interface
|
47 |
+
interface.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|