File size: 7,049 Bytes
8c4611d
 
 
 
 
 
 
 
 
 
 
a001ae3
 
 
0fc3a1a
3b3fba2
804694d
0fc3a1a
 
 
 
 
 
 
 
 
 
 
 
 
 
a001ae3
 
 
 
 
 
 
 
 
3b3fba2
a001ae3
 
eee3432
a001ae3
 
 
202f621
f98760e
0fc3a1a
f98760e
 
202f621
 
f98760e
 
 
 
202f621
 
 
 
 
 
 
 
f98760e
202f621
 
f98760e
202f621
 
 
 
 
7c98ceb
202f621
 
a001ae3
8c4611d
 
 
 
 
5c47ebc
 
 
 
 
8c4611d
202f621
a1b868a
8c4611d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5c47ebc
 
 
 
f98760e
a1b868a
202f621
5c47ebc
a001ae3
a1b868a
202f621
5c47ebc
8c4611d
5c47ebc
46fc8ff
5c47ebc
8c4611d
 
 
 
 
 
4bd299b
8c4611d
a001ae3
0fc3a1a
 
2aa799c
f98760e
8c4611d
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
import gradio as gr
import edge_tts
import asyncio
import tempfile
import numpy as np
import soxr
from pydub import AudioSegment
import torch
import sentencepiece as spm
import onnxruntime as ort
from huggingface_hub import hf_hub_download, InferenceClient
import requests
from bs4 import BeautifulSoup
import urllib
import random
import re

# List of user agents to choose from for requests
_useragent_list = [
    'Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:66.0) Gecko/20100101 Firefox/66.0',
    'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.0.0 Safari/537.36',
    'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.0.0 Safari/537.36',
    'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/109.0.0.0 Safari/537.36',
    'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.0.0 Safari/537.36',
    'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.0.0 Safari/537.36 Edg/111.0.1661.62',
    'Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:109.0) Gecko/20100101 Firefox/111.0'
]

def get_useragent():
    """Returns a random user agent from the list."""
    return random.choice(_useragent_list)

def extract_text_from_webpage(html_content):
    """Extracts visible text from HTML content using BeautifulSoup."""
    soup = BeautifulSoup(html_content, "html.parser")
    # Remove unwanted tags
    for tag in soup(["script", "style", "header", "footer", "nav"]):
        tag.extract()
    # Get the remaining visible text
    visible_text = soup.get_text(strip=True)
    visible_text = visible_text[:8000]
    return visible_text

def search(term, num_results=2, timeout=5, ssl_verify=None):
    """Performs a Google search and returns the results."""
    escaped_term = urllib.parse.quote_plus(term)
    all_results = []
    resp = requests.get(
            url="https://www.google.com/search",
            headers={"User-Agent": get_useragent()}, # Set random user agent
            params={
                "q": term,
                "num": num_results,
                "udm": 14,
            },
            timeout=timeout,
            verify=ssl_verify,
        )
    resp.raise_for_status() # Raise an exception if request fails
    soup = BeautifulSoup(resp.text, "html.parser")
    result_block = soup.find_all("div", attrs={"class": "g"})
    for result in result_block:
        link = result.find("a", href=True)
        if link:
            link = link["href"]
            try:
                    # Fetch webpage content
                webpage = requests.get(link, headers={"User-Agent": get_useragent()})
                webpage.raise_for_status()
                    # Extract visible text from webpage
                visible_text = extract_text_from_webpage(webpage.text)
                all_results.append({"link": link, "text": visible_text})
            except requests.exceptions.RequestException as e:
                print(f"Error fetching or processing {link}: {e}")
                all_results.append({"link": link, "text": None})
        else:
            all_results.append({"link": None, "text": None})
    print(all_results)
    return all_results

# Speech Recognition Model Configuration
model_name = "neongeckocom/stt_en_citrinet_512_gamma_0_25"
sample_rate = 16000

# Download preprocessor, encoder and tokenizer
preprocessor = torch.jit.load(hf_hub_download(model_name, "preprocessor.ts", subfolder="onnx"))
encoder = ort.InferenceSession(hf_hub_download(model_name, "model.onnx", subfolder="onnx"))
tokenizer = spm.SentencePieceProcessor(hf_hub_download(model_name, "tokenizer.spm", subfolder="onnx"))

# Mistral Model Configuration
client1 = InferenceClient("mistralai/Mistral-7B-Instruct-v0.2")
system_instructions1 = "<s>[SYSTEM] Answer as OpenGPT 4o, Made by 'KingNish', Keep conversation very short, clear, friendly and concise. The text provided is a request for a specific type of response from you, the virtual assistant. The request asks you to provide friendly responses. The expectation is that I will avoid introductions and start answering the query directly, elaborating on all aspects of the request. As an AI-powered assistant, your task is to generate responses that appear as if they are created by the user and not an AI-powered assistant. [USER]"

def resample(audio_fp32, sr):
    return soxr.resample(audio_fp32, sr, sample_rate)

def to_float32(audio_buffer):
    return np.divide(audio_buffer, np.iinfo(audio_buffer.dtype).max, dtype=np.float32)

def transcribe(audio_path):
    audio_file = AudioSegment.from_file(audio_path)
    sr = audio_file.frame_rate
    audio_buffer = np.array(audio_file.get_array_of_samples())

    audio_fp32 = to_float32(audio_buffer)
    audio_16k = resample(audio_fp32, sr)

    input_signal = torch.tensor(audio_16k).unsqueeze(0)
    length = torch.tensor(len(audio_16k)).unsqueeze(0)
    processed_signal, _ = preprocessor.forward(input_signal=input_signal, length=length)
    
    logits = encoder.run(None, {'audio_signal': processed_signal.numpy(), 'length': length.numpy()})[0][0]

    blank_id = tokenizer.vocab_size()
    decoded_prediction = [p for p in logits.argmax(axis=1).tolist() if p != blank_id]
    text = tokenizer.decode_ids(decoded_prediction)

    return text

def model(text, web_search):
    if web_search is True:
        """Performs a web search, feeds the results to a language model, and returns the answer."""
        web_results = search(text)
        web2 = ' '.join([f"Link: {res['link']}\nText: {res['text']}\n\n" for res in web_results])
        formatted_prompt = system_instructions1 + text + "[WEB]" + str(web2) + "[OpenGPT 4o]"
        stream = client1.text_generation(formatted_prompt, max_new_tokens=300, stream=True, details=True, return_full_text=False)
        return "".join([response.token.text for response in stream if response.token.text != "</s>"])
    else:
        formatted_prompt = system_instructions1 + text + "[OpenGPT 4o]"
        stream = client1.text_generation(formatted_prompt, max_new_tokens=300, stream=True, details=True, return_full_text=False)
        return "".join([response.token.text for response in stream if response.token.text != "</s>"])

async def respond(audio, web_search):
    user = transcribe(audio)
    reply = model(user, web_search)
    communicate = edge_tts.Communicate(reply)
    with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
        tmp_path = tmp_file.name
        await communicate.save(tmp_path)
    return tmp_path

with gr.Blocks() as demo:    
    with gr.Row():
        web_search = gr.Checkbox(label="Web Search", value=False)
        input = gr.Audio(label="User Input", sources="microphone", type="filepath")
        output = gr.Audio(label="AI", autoplay=True)
        gr.Interface(fn=respond, inputs=[input, web_search], outputs=[output], live=True)

if __name__ == "__main__":
    demo.queue(max_size=200).launch()