JiunYi's picture
Adjust layout
8633db7
raw
history blame
9.58 kB
import arrow
import gradio as gr
import os
import re
import pandas as pd
from pathlib import Path
from time import sleep
from tqdm import tqdm
from api_calls import *
ROOT_DIR = Path(__file__).resolve().parents[0]
default_co_ids = ["2330", "2317", "1301", "2303", "1101", "2311", "2002", "2412"]
default_company_names = ["台泥", "聯電", "裕融", "大同", "台積電", "鴻海", "中鋼", "中華電信"]
default_industries = ["半導體業", "水泥工業", "電子零組件業", "電子通路業", "電腦及週邊設備業", "其他電子業", "金融保險業", "文化創意業", "鋼鐵工業", "通信網路業", "電子商務業"]
def load_default_filter_data(filter_type):
d = {
"co_id": default_co_ids,
"company_name": default_company_names,
"industry": default_industries,
}[filter_type]
return gr.Dropdown.update(choices=d)
def markdown2html(md: str) -> str:
import markdown
return markdown.markdown(md)
def export_to_txt(output):
today_dt_str = arrow.now(tz="Asia/Taipei").format("YYYYMMDDTHHmmss")
with open(f"esg_report_summary-{today_dt_str}.txt", "w") as f:
f.write(output)
return f"esg_report_summary-{today_dt_str}.txt"
def print_like_dislike(x: gr.LikeData):
print(x.index, x.value, x.liked)
def add_text(history, text):
history = history + [(text, None)]
return history, gr.Textbox(value="", interactive=False)
def esgsumm_exe(openai_model_name, year, target_type, target_value, tone):
query = "根據您提供的相關資訊和偏好語氣,以繁體中文生成一份符合GRI標準的報告草稿。報告將包括每個GRI披露項目的標題、相關公司行為的概要,以及公司的具體措施和效果。"
response = api_rag_summ_chain_demo(openai_model_name, query, year, target_type, target_value, tone)
full_anwser = ""
for chunk in response.iter_content(chunk_size=32):
if chunk:
try:
_c = chunk.decode('utf-8')
except UnicodeDecodeError:
_c = " "
full_anwser += _c
yield full_anwser
# for character in response:
# full_text += character
# yield full_text
def esgqabot(history, openai_model_name, year, target_type, target_value):
query = history[-1][0]
response = api_rag_qa_chain_demo(openai_model_name, query, year, target_type, target_value, history[:-1])
history[-1][1] = ""
for chunk in response.iter_content(chunk_size=32):
if chunk:
try:
_c = chunk.decode('utf-8')
except UnicodeDecodeError:
_c = " "
history[-1][1] += _c
yield history
# for character in response:
# history[-1][1] += character
# yield history
css = """
#center {text-align: center}
footer {visibility: hidden}
a {color: rgb(255, 206, 10) !important}
"""
with gr.Blocks(css=css, theme=gr.themes.Monochrome(neutral_hue="green", primary_hue="slate")) as demo:
gr.HTML("<h1>ESG RAG Playground</h1>", elem_id="center")
gr.Markdown("Made by `Abao`", elem_id="center")
gr.Markdown("---")
# esgsumm
with gr.Tab("ESG Report Summarization"):
gr.HTML("<h2>Report Summarization</h2><p>Summarize report with tone & schema.</p>", elem_id="center")
with gr.Row():
with gr.Group():
gr.Markdown("### Configuration", elem_id="center")
esgsumm_report_tone = gr.Dropdown(
value="精確",
label="Tone",
choices=["富有創意", "中庸", "精確"])
esgsumm_openai_model_name = gr.Dropdown(
value="gpt-4-turbo-preview",
label="OpenAI Model",
choices=["gpt-4-turbo-preview", "gpt-3.5-turbo"])
esgsumm_year = gr.Dropdown(
value="111",
label="Year",
choices=["111", "110", "109"]
)
esgsumm_target_type = gr.Dropdown(
value="company_name",
label="Target Type",
choices=["company_name", "industry", "co_id"]
)
esgsumm_target_value = gr.Dropdown(
value="台積電",
label="Target Value",
choices=["台泥", "聯電", "裕融", "大同", "台積電", "鴻海", "中鋼", "中華電信"]
)
esgsumm_report_gen_button = gr.Button("Generate Report")
with gr.Column():
gr.Markdown("## Generate ESG Summarization", elem_id="center")
with gr.Accordion("Revise Your Prompt", open=False):
esgsumm_checkbox_replace = gr.Checkbox(label="Replace with new prompt")
esgsumm_prompt_tmpl = gr.Textbox(
label="希望用於本次問答的prompt",
info="必須使用到的變數:{filtered_data}、{query}",
value="",
interactive=True,
)
esgsumm_report_output = gr.Textbox(
label="Report Output",
interactive=False,
scale=4,
)
esgsumm_report_output_html = gr.HTML()
esgsumm_download_btn = gr.Button("Export Summary")
esgsumm_download_file = gr.File(
label="Download Summary Text", file_types=[".txt"]
)
# esgqa
with gr.Tab("ESG QA"):
gr.HTML("<h2>ParallelQA (GPT-4 like)</h2><p>Test multiple LLMs at once.</p>", elem_id="center")
with gr.Row():
with gr.Group():
gr.Markdown("### Configuration", elem_id="center")
esgqa_openai_model_name = gr.Dropdown(
value="gpt-4-turbo-preview",
label="OpenAI Model",
choices=["gpt-4-turbo-preview", "gpt-3.5-turbo"])
esgqa_year = gr.Dropdown(
value="111",
label="Year",
choices=["111", "110", "109"]
)
esgqa_target_type = gr.Dropdown(
value="company_name",
label="Target Type",
choices=["company_name", "industry", "co_id"]
)
esgqa_target_value = gr.Dropdown(
value="台積電",
label="Target Value",
choices=["台泥", "聯電", "裕融", "大同", "台積電", "鴻海", "中鋼", "中華電信"]
)
with gr.Column():
gr.Markdown("## Chat with ESGQABot", elem_id="center")
with gr.Accordion("Revise Your Prompt", open=False):
esgqa_checkbox_replace = gr.Checkbox(label="Replace with new prompt")
esgqa_prompt_tmpl = gr.Textbox(
label="希望用於本次問答的prompt",
info="必須使用到的變數:{filtered_data}、{query}",
value="",
interactive=True,
)
esgqa_chatbot = gr.Chatbot(
[(None, "我是 ESGQABot\n有什麼能為您服務的嗎?")],
elem_id="chatbot",
scale=1,
height=700,
bubble_full_width=False
)
with gr.Row():
esgqa_chatbot_input = gr.Textbox(
scale=4,
show_label=False,
placeholder="Enter text and press enter, or upload an image",
container=False,
)
esgqa_chat_btn = gr.Button("💬")
# esgsumm
esgsumm_target_type.change(
load_default_filter_data, [esgsumm_target_type], [esgsumm_target_value]
)
esgsumm_report_gen_button.click(
esgsumm_exe, [esgsumm_openai_model_name, esgsumm_year, esgsumm_target_type, esgsumm_target_value, esgsumm_report_tone], [esgsumm_report_output]
).then(
markdown2html, [esgsumm_report_output], [esgsumm_report_output_html]
)
esgsumm_download_btn.click(
fn=export_to_txt,
inputs=[esgsumm_report_output],
outputs=esgsumm_download_file,
)
# esgqa
esgqa_target_type.change(
load_default_filter_data, [esgqa_target_type], [esgqa_target_value]
)
esgqa_chatbot_input.submit(
add_text, [esgqa_chatbot, esgqa_chatbot_input], [esgqa_chatbot, esgqa_chatbot_input], queue=False
).then(
esgqabot, [esgqa_chatbot, esgqa_openai_model_name, esgqa_year, esgqa_target_type, esgqa_target_value], esgqa_chatbot, api_name="esgqa_response"
).then(
lambda: gr.Textbox(interactive=True), None, [esgqa_chatbot_input], queue=False
)
esgqa_chat_btn.click(
add_text, [esgqa_chatbot, esgqa_chatbot_input], [esgqa_chatbot, esgqa_chatbot_input], queue=False
).then(
esgqabot, [esgqa_chatbot, esgqa_openai_model_name, esgqa_year, esgqa_target_type, esgqa_target_value], esgqa_chatbot, api_name="esgqa_response"
).then(
lambda: gr.Textbox(interactive=True), None, [esgqa_chatbot_input], queue=False
)
esgqa_chatbot.like(print_like_dislike, None, None)
if __name__ == "__main__":
demo.queue().launch(max_threads=10)