Spaces:
Runtime error
Runtime error
Kirili4ik
commited on
Commit
•
21a5dba
1
Parent(s):
5246f84
clean and make 6ep model
Browse files- app.py +18 -136
- util_funcs.py +109 -0
app.py
CHANGED
@@ -1,118 +1,7 @@
|
|
1 |
import torch
|
2 |
import gradio as gr
|
3 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
4 |
-
|
5 |
-
|
6 |
-
def get_length_param(text: str, tokenizer) -> str:
|
7 |
-
"""Maps text to 1 of 4 buckets based on length after encoding.
|
8 |
-
|
9 |
-
Parameters
|
10 |
-
----------
|
11 |
-
text: str
|
12 |
-
The text to be given 1 of 4 length parameters.
|
13 |
-
|
14 |
-
tokenizer: HuggingFace tokenizer
|
15 |
-
Tokenizer that used to compute the length of the text after encoding.
|
16 |
-
For more info ee https://huggingface.co/transformers/main_classes/tokenizer.html
|
17 |
-
|
18 |
-
Returns
|
19 |
-
-------
|
20 |
-
len_param: str
|
21 |
-
One of four buckets:
|
22 |
-
'1' for short, '2' for medium, '3' for long texts and '-' for all others.
|
23 |
-
"""
|
24 |
-
tokens_count = len(tokenizer.encode(text))
|
25 |
-
if tokens_count <= 15:
|
26 |
-
len_param = '1'
|
27 |
-
elif tokens_count <= 50:
|
28 |
-
len_param = '2'
|
29 |
-
elif tokens_count <= 256:
|
30 |
-
len_param = '3'
|
31 |
-
else:
|
32 |
-
len_param = '-'
|
33 |
-
return len_param
|
34 |
-
|
35 |
-
|
36 |
-
def get_user_param(text: dict, machine_name_in_chat: str) -> str:
|
37 |
-
"""Maps text by 1/0 for it to be the person or the machine in the dialogue
|
38 |
-
|
39 |
-
Parameters
|
40 |
-
----------
|
41 |
-
text: Dict[..., 'from', ...]
|
42 |
-
Dict containing field 'from' with the name of the user who sent the message
|
43 |
-
|
44 |
-
machine_name_in_chat: str
|
45 |
-
Str with the name of the machine - it will be predicted
|
46 |
-
"""
|
47 |
-
if text['from'] == machine_name_in_chat:
|
48 |
-
return '1' # machine
|
49 |
-
else:
|
50 |
-
return '0' # human
|
51 |
-
|
52 |
-
|
53 |
-
def build_text_file(data_json: dict, dest_path: str,
|
54 |
-
tokenizer, machine_name_in_chat='Кирилл Гельван'):
|
55 |
-
"""Create a text file for training in special format for ruDialoGPT-3.
|
56 |
-
|
57 |
-
Parameters
|
58 |
-
----------
|
59 |
-
data_json: dict
|
60 |
-
Dict containing 'text' (message) and 'from' (user who sent the message)
|
61 |
-
|
62 |
-
dest_path: str
|
63 |
-
String containing path to write data there
|
64 |
-
|
65 |
-
tokenizer: HuggingFace tokenizer
|
66 |
-
Tokenizer that used to compute the length of the text after encoding.
|
67 |
-
For more info ee https://huggingface.co/transformers/main_classes/tokenizer.html
|
68 |
-
"""
|
69 |
-
f = open(dest_path, 'w')
|
70 |
-
new_data = ''
|
71 |
-
for i in range(len(data_json) - 1):
|
72 |
-
message, next_message = data_json[i], data_json[i+1]
|
73 |
-
if message['text'] == '' or type(message['text']) != str:
|
74 |
-
continue
|
75 |
-
if next_message['text'] == '' or type(next_message['text']) != str:
|
76 |
-
continue
|
77 |
-
|
78 |
-
user = get_user_param(message, machine_name_in_chat=machine_name_in_chat)
|
79 |
-
length = get_length_param(data_json[i+1]['text'], tokenizer)
|
80 |
-
message_text = re.sub(r"\n", ". ", message['text'])
|
81 |
-
new_data += f"|{user}|{length}|{message_text}{tokenizer.eos_token}" + "\n"
|
82 |
-
|
83 |
-
f.write(new_data)
|
84 |
-
|
85 |
-
|
86 |
-
def load_dataset(train_path, test_path, tokenizer):
|
87 |
-
"""Creates train and test PyTorch datasets and collate_fn using HuggingFace.
|
88 |
-
|
89 |
-
Parameters
|
90 |
-
----------
|
91 |
-
train_path: str
|
92 |
-
String containing path to train data
|
93 |
-
|
94 |
-
test_path: str
|
95 |
-
String containing path to test data
|
96 |
-
|
97 |
-
tokenizer: HuggingFace tokenizer
|
98 |
-
Tokenizer that used to compute the length of the text after encoding.
|
99 |
-
For more info ee https://huggingface.co/transformers/main_classes/tokenizer.html
|
100 |
-
"""
|
101 |
-
train_dataset = TextDataset(
|
102 |
-
tokenizer = tokenizer,
|
103 |
-
file_path = train_path,
|
104 |
-
block_size = 256)
|
105 |
-
|
106 |
-
test_dataset = TextDataset(
|
107 |
-
tokenizer = tokenizer,
|
108 |
-
file_path = test_path,
|
109 |
-
block_size = 256)
|
110 |
-
|
111 |
-
data_collator = DataCollatorForLanguageModeling(
|
112 |
-
tokenizer=tokenizer, mlm=False
|
113 |
-
)
|
114 |
-
return train_dataset, test_dataset, data_collator
|
115 |
-
|
116 |
|
117 |
def chat_function(message, length_of_the_answer, who_is_next, creativity): # model, tokenizer
|
118 |
|
@@ -138,12 +27,6 @@ def chat_function(message, length_of_the_answer, who_is_next, creativity): # m
|
|
138 |
history = gr.get_state() or []
|
139 |
chat_history_ids = torch.zeros((1, 0), dtype=torch.int) if history == [] else torch.tensor(history[-1][2], dtype=torch.long)
|
140 |
|
141 |
-
######### next_who = input("Who's phrase?\t") #input("H / G?") # Human or GPT
|
142 |
-
|
143 |
-
# In case Human
|
144 |
-
##### if next_who == "H":
|
145 |
-
|
146 |
-
######## input_user = input("===> Human: ")
|
147 |
# encode the new user input, add parameters and return a tensor in Pytorch
|
148 |
if len(input_user) != 0:
|
149 |
|
@@ -156,7 +39,6 @@ def chat_function(message, length_of_the_answer, who_is_next, creativity): # m
|
|
156 |
|
157 |
if next_who == "G":
|
158 |
|
159 |
-
######## next_len = input("Phrase len? 1/2/3/-\t") #input("Exp. len?(-/1/2/3): ")
|
160 |
# encode the new user input, add parameters and return a tensor in Pytorch
|
161 |
new_user_input_ids = tokenizer.encode(f"|1|{next_len}|", return_tensors="pt")
|
162 |
# append the new user input tokens to the chat history
|
@@ -198,45 +80,45 @@ def chat_function(message, length_of_the_answer, who_is_next, creativity): # m
|
|
198 |
html += f"<div class='resp_msg'>{resp_msg}</div>"
|
199 |
html += "</div>"
|
200 |
return html
|
201 |
-
|
|
|
|
|
202 |
|
203 |
|
204 |
# Download checkpoint:
|
205 |
-
checkpoint = "Kirili4ik/ruDialoGpt3-medium-finetuned-telegram"
|
206 |
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
|
207 |
model = AutoModelForCausalLM.from_pretrained(checkpoint)
|
208 |
model = model.eval()
|
209 |
|
210 |
-
|
211 |
checkbox_group = gr.inputs.CheckboxGroup(['Kirill', 'Me'], default=['Kirill'], type="value", label=None)
|
212 |
-
|
213 |
-
inputs = gr.inputs.Textbox(lines=1, label="???")
|
214 |
-
outputs = gr.outputs.Textbox(label="Kirill (GPT-2):")
|
215 |
title = "Chat with Kirill (in Russian)"
|
216 |
description = "Тут можно поболтать со мной. Но вместо меня бот. Оставь message пустым, чтобы Кирилл продолжил говорить. Подбробнее о технике по ссылке внизу."
|
217 |
article = "<p style='text-align: center'><a href='https://github.com/Kirili4ik/ruDialoGpt3-finetune-colab'>Github with fine-tuning GPT-2 on your chat</a></p>"
|
218 |
examples = [
|
219 |
-
["Привет, как дела?", 'medium', 'Kirill', 0.
|
220 |
["Сколько тебе лет?", 'medium', 'Kirill', 0.3],
|
221 |
]
|
222 |
|
223 |
-
iface = gr.Interface(chat_function,
|
224 |
-
[
|
225 |
-
"text",
|
226 |
-
gr.inputs.Radio(["short", "medium", "long"], default='medium'),
|
227 |
gr.inputs.Radio(["Kirill", "Me"], default='Kirill'),
|
228 |
-
gr.inputs.Slider(0, 1, default=0.
|
229 |
-
],
|
230 |
-
"html",
|
231 |
title=title, description=description, article=article, examples=examples,
|
232 |
css= """
|
233 |
.chatbox {display:flex;flex-direction:column}
|
234 |
.user_msg, .resp_msg {padding:4px;margin-bottom:4px;border-radius:4px;width:80%}
|
235 |
.user_msg {background-color:cornflowerblue;color:white;align-self:start}
|
236 |
.resp_msg {background-color:lightgray;align-self:self-end}
|
237 |
-
""",
|
238 |
-
allow_screenshot=True,
|
239 |
allow_flagging=False
|
240 |
)
|
241 |
|
242 |
-
|
|
|
|
1 |
import torch
|
2 |
import gradio as gr
|
3 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
4 |
+
from util_funcs import get_length_param
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
def chat_function(message, length_of_the_answer, who_is_next, creativity): # model, tokenizer
|
7 |
|
|
|
27 |
history = gr.get_state() or []
|
28 |
chat_history_ids = torch.zeros((1, 0), dtype=torch.int) if history == [] else torch.tensor(history[-1][2], dtype=torch.long)
|
29 |
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
# encode the new user input, add parameters and return a tensor in Pytorch
|
31 |
if len(input_user) != 0:
|
32 |
|
|
|
39 |
|
40 |
if next_who == "G":
|
41 |
|
|
|
42 |
# encode the new user input, add parameters and return a tensor in Pytorch
|
43 |
new_user_input_ids = tokenizer.encode(f"|1|{next_len}|", return_tensors="pt")
|
44 |
# append the new user input tokens to the chat history
|
|
|
80 |
html += f"<div class='resp_msg'>{resp_msg}</div>"
|
81 |
html += "</div>"
|
82 |
return html
|
83 |
+
|
84 |
+
|
85 |
+
|
86 |
|
87 |
|
88 |
# Download checkpoint:
|
89 |
+
checkpoint = "Kirili4ik/ruDialoGpt3-medium-finetuned-telegram-6ep"
|
90 |
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
|
91 |
model = AutoModelForCausalLM.from_pretrained(checkpoint)
|
92 |
model = model.eval()
|
93 |
|
94 |
+
# Gradio
|
95 |
checkbox_group = gr.inputs.CheckboxGroup(['Kirill', 'Me'], default=['Kirill'], type="value", label=None)
|
|
|
|
|
|
|
96 |
title = "Chat with Kirill (in Russian)"
|
97 |
description = "Тут можно поболтать со мной. Но вместо меня бот. Оставь message пустым, чтобы Кирилл продолжил говорить. Подбробнее о технике по ссылке внизу."
|
98 |
article = "<p style='text-align: center'><a href='https://github.com/Kirili4ik/ruDialoGpt3-finetune-colab'>Github with fine-tuning GPT-2 on your chat</a></p>"
|
99 |
examples = [
|
100 |
+
["Привет, как дела?", 'medium', 'Kirill', 0.5],
|
101 |
["Сколько тебе лет?", 'medium', 'Kirill', 0.3],
|
102 |
]
|
103 |
|
104 |
+
iface = gr.Interface(chat_function,
|
105 |
+
[
|
106 |
+
"text",
|
107 |
+
gr.inputs.Radio(["short", "medium", "long"], default='medium'),
|
108 |
gr.inputs.Radio(["Kirill", "Me"], default='Kirill'),
|
109 |
+
gr.inputs.Slider(0, 1, default=0.5)
|
110 |
+
],
|
111 |
+
"html",
|
112 |
title=title, description=description, article=article, examples=examples,
|
113 |
css= """
|
114 |
.chatbox {display:flex;flex-direction:column}
|
115 |
.user_msg, .resp_msg {padding:4px;margin-bottom:4px;border-radius:4px;width:80%}
|
116 |
.user_msg {background-color:cornflowerblue;color:white;align-self:start}
|
117 |
.resp_msg {background-color:lightgray;align-self:self-end}
|
118 |
+
""",
|
119 |
+
allow_screenshot=True,
|
120 |
allow_flagging=False
|
121 |
)
|
122 |
|
123 |
+
if __name__ == "__main__":
|
124 |
+
iface.launch()
|
util_funcs.py
ADDED
@@ -0,0 +1,109 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
def get_length_param(text: str, tokenizer) -> str:
|
2 |
+
"""Maps text to 1 of 4 buckets based on length after encoding.
|
3 |
+
|
4 |
+
Parameters
|
5 |
+
----------
|
6 |
+
text: str
|
7 |
+
The text to be given 1 of 4 length parameters.
|
8 |
+
|
9 |
+
tokenizer: HuggingFace tokenizer
|
10 |
+
Tokenizer that used to compute the length of the text after encoding.
|
11 |
+
For more info ee https://huggingface.co/transformers/main_classes/tokenizer.html
|
12 |
+
|
13 |
+
Returns
|
14 |
+
-------
|
15 |
+
len_param: str
|
16 |
+
One of four buckets:
|
17 |
+
'1' for short, '2' for medium, '3' for long texts and '-' for all others.
|
18 |
+
"""
|
19 |
+
tokens_count = len(tokenizer.encode(text))
|
20 |
+
if tokens_count <= 15:
|
21 |
+
len_param = '1'
|
22 |
+
elif tokens_count <= 50:
|
23 |
+
len_param = '2'
|
24 |
+
elif tokens_count <= 256:
|
25 |
+
len_param = '3'
|
26 |
+
else:
|
27 |
+
len_param = '-'
|
28 |
+
return len_param
|
29 |
+
|
30 |
+
|
31 |
+
def get_user_param(text: dict, machine_name_in_chat: str) -> str:
|
32 |
+
"""Maps text by 1/0 for it to be the person or the machine in the dialogue
|
33 |
+
|
34 |
+
Parameters
|
35 |
+
----------
|
36 |
+
text: Dict[..., 'from', ...]
|
37 |
+
Dict containing field 'from' with the name of the user who sent the message
|
38 |
+
|
39 |
+
machine_name_in_chat: str
|
40 |
+
Str with the name of the machine - it will be predicted
|
41 |
+
"""
|
42 |
+
if text['from'] == machine_name_in_chat:
|
43 |
+
return '1' # machine
|
44 |
+
else:
|
45 |
+
return '0' # human
|
46 |
+
|
47 |
+
|
48 |
+
def build_text_file(data_json: dict, dest_path: str,
|
49 |
+
tokenizer, machine_name_in_chat='Кирилл Гельван'):
|
50 |
+
"""Create a text file for training in special format for ruDialoGPT-3.
|
51 |
+
|
52 |
+
Parameters
|
53 |
+
----------
|
54 |
+
data_json: dict
|
55 |
+
Dict containing 'text' (message) and 'from' (user who sent the message)
|
56 |
+
|
57 |
+
dest_path: str
|
58 |
+
String containing path to write data there
|
59 |
+
|
60 |
+
tokenizer: HuggingFace tokenizer
|
61 |
+
Tokenizer that used to compute the length of the text after encoding.
|
62 |
+
For more info ee https://huggingface.co/transformers/main_classes/tokenizer.html
|
63 |
+
"""
|
64 |
+
f = open(dest_path, 'w')
|
65 |
+
new_data = ''
|
66 |
+
for i in range(len(data_json) - 1):
|
67 |
+
message, next_message = data_json[i], data_json[i+1]
|
68 |
+
if message['text'] == '' or type(message['text']) != str:
|
69 |
+
continue
|
70 |
+
if next_message['text'] == '' or type(next_message['text']) != str:
|
71 |
+
continue
|
72 |
+
|
73 |
+
user = get_user_param(message, machine_name_in_chat=machine_name_in_chat)
|
74 |
+
length = get_length_param(data_json[i+1]['text'], tokenizer)
|
75 |
+
message_text = re.sub(r"\n", ". ", message['text'])
|
76 |
+
new_data += f"|{user}|{length}|{message_text}{tokenizer.eos_token}" + "\n"
|
77 |
+
|
78 |
+
f.write(new_data)
|
79 |
+
|
80 |
+
|
81 |
+
def load_dataset(train_path, test_path, tokenizer):
|
82 |
+
"""Creates train and test PyTorch datasets and collate_fn using HuggingFace.
|
83 |
+
|
84 |
+
Parameters
|
85 |
+
----------
|
86 |
+
train_path: str
|
87 |
+
String containing path to train data
|
88 |
+
|
89 |
+
test_path: str
|
90 |
+
String containing path to test data
|
91 |
+
|
92 |
+
tokenizer: HuggingFace tokenizer
|
93 |
+
Tokenizer that used to compute the length of the text after encoding.
|
94 |
+
For more info ee https://huggingface.co/transformers/main_classes/tokenizer.html
|
95 |
+
"""
|
96 |
+
train_dataset = TextDataset(
|
97 |
+
tokenizer = tokenizer,
|
98 |
+
file_path = train_path,
|
99 |
+
block_size = 256)
|
100 |
+
|
101 |
+
test_dataset = TextDataset(
|
102 |
+
tokenizer = tokenizer,
|
103 |
+
file_path = test_path,
|
104 |
+
block_size = 256)
|
105 |
+
|
106 |
+
data_collator = DataCollatorForLanguageModeling(
|
107 |
+
tokenizer=tokenizer, mlm=False
|
108 |
+
)
|
109 |
+
return train_dataset, test_dataset, data_collator
|