Spaces:
Runtime error
Runtime error
File size: 2,295 Bytes
3e99418 0c9dedf 3e99418 0c9dedf 3e99418 0c9dedf 3e99418 0c9dedf 3e99418 0c9dedf 3e99418 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 |
# Adapted from https://github.com/dajes/frame-interpolation-pytorch
import os
import cv2
import numpy as np
import torch
import bisect
import shutil
import pdb
from tqdm import tqdm
def init_frame_interpolation_model():
print("Initializing frame interpolation model")
checkpoint_name = os.path.join("./pretrained_model/film_net_fp16.pt")
model = torch.jit.load(checkpoint_name, map_location='cpu')
model.eval()
model = model.half()
model = model.to(device="cuda")
return model
def batch_images_interpolation_tool(input_tensor, model, inter_frames=1):
video_tensor = []
frame_num = input_tensor.shape[2] # bs, channel, frame, height, width
for idx in tqdm(range(frame_num-1)):
image1 = input_tensor[:,:,idx]
image2 = input_tensor[:,:,idx+1]
results = [image1, image2]
inter_frames = int(inter_frames)
idxes = [0, inter_frames + 1]
remains = list(range(1, inter_frames + 1))
splits = torch.linspace(0, 1, inter_frames + 2)
for _ in range(len(remains)):
starts = splits[idxes[:-1]]
ends = splits[idxes[1:]]
distances = ((splits[None, remains] - starts[:, None]) / (ends[:, None] - starts[:, None]) - .5).abs()
matrix = torch.argmin(distances).item()
start_i, step = np.unravel_index(matrix, distances.shape)
end_i = start_i + 1
x0 = results[start_i]
x1 = results[end_i]
x0 = x0.half()
x1 = x1.half()
x0 = x0.cuda()
x1 = x1.cuda()
dt = x0.new_full((1, 1), (splits[remains[step]] - splits[idxes[start_i]])) / (splits[idxes[end_i]] - splits[idxes[start_i]])
with torch.no_grad():
prediction = model(x0, x1, dt)
insert_position = bisect.bisect_left(idxes, remains[step])
idxes.insert(insert_position, remains[step])
results.insert(insert_position, prediction.clamp(0, 1).cpu().float())
del remains[step]
for sub_idx in range(len(results)-1):
video_tensor.append(results[sub_idx].unsqueeze(2))
video_tensor.append(input_tensor[:,:,-1].unsqueeze(2))
video_tensor = torch.cat(video_tensor, dim=2)
return video_tensor |