File size: 10,693 Bytes
1de8821
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
import os
import cv2
import torch
import spaces
import imageio
import numpy as np
import gradio as gr
torch.jit.script = lambda f: f

import argparse
from utils.batch_inference import (
    BSRInferenceLoop, BIDInferenceLoop
)

# import subprocess
# subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)

device = 'cuda' if torch.cuda.is_available() else 'cpu'
def get_example(task):
    case = {
        "dn": [
        ['examples/bus.mp4',],
        ['examples/koala.mp4',],
        ['examples/flamingo.mp4',],
        ['examples/rhino.mp4',],
        ['examples/elephant.mp4',],
        ['examples/sheep.mp4',],
        ['examples/dog-agility.mp4',],
        # ['examples/dog-gooses.mp4',],
        ], 
        "sr": [
        ['examples/bus_sr.mp4',],
        ['examples/koala_sr.mp4',],
        ['examples/flamingo_sr.mp4',],
        ['examples/rhino_sr.mp4',],
        ['examples/elephant_sr.mp4',],
        ['examples/sheep_sr.mp4',],
        ['examples/dog-agility_sr.mp4',],
        # ['examples/dog-gooses_sr.mp4',],
        ]
        
    }
    return case[task]



def update_prompt(input_video):
    video_name = input_video.split('/')[-1]
    return set_default_prompt(video_name)


# Map videos to corresponding images
video_to_image = {
    'bus.mp4': ['examples_frames/bus'],
    'koala.mp4': ['examples_frames/koala'],
    'dog-gooses.mp4': ['examples_frames/dog-gooses'],
    'flamingo.mp4': ['examples_frames/flamingo'],
    'rhino.mp4': ['examples_frames/rhino'],
    'elephant.mp4': ['examples_frames/elephant'],
    'sheep.mp4': ['examples_frames/sheep'],
    'dog-agility.mp4': ['examples_frames/dog-agility'],

    'bus_sr.mp4': ['examples_frames/bus_sr'],
    'koala_sr.mp4': ['examples_frames/koala_sr'],
    'dog-gooses_sr.mp4': ['examples_frames/dog_gooses_sr'],
    'flamingo_sr.mp4': ['examples_frames/flamingo_sr'],
    'rhino_sr.mp4': ['examples_frames/rhino_sr'],
    'elephant_sr.mp4': ['examples_frames/elephant_sr'],
    'sheep_sr.mp4': ['examples_frames/sheep_sr'],
    'dog-agility_sr.mp4': ['examples_frames/dog-agility_sr'],
}


def images_to_video(image_list, output_path, fps=10):
    # Convert PIL Images to numpy arrays
    frames = [np.array(img).astype(np.uint8) for img in image_list]
    frames = frames[:20]

    # Create video writer
    writer = imageio.get_writer(output_path, fps=fps, codec='libx264')

    for frame in frames:
        writer.append_data(frame)

    writer.close()



@spaces.GPU(duration=120)
def DiffBIR_restore(input_video, prompt, sr_ratio, n_frames, n_steps, guidance_scale, seed, n_prompt, task):

    video_name = input_video.split('/')[-1]
    if video_name in video_to_image:
        frames_path = video_to_image[video_name][0]
    else:
        return None
    print(f"[INFO] input_video: {input_video}")
    print(f"[INFO] Frames path: {frames_path}")
    args = argparse.Namespace()

    # args.task = True, choices=["sr", "dn", "fr", "fr_bg"]
    args.task = task
    args.upscale = sr_ratio

    ### sampling parameters
    args.steps = n_steps
    args.better_start = True
    args.tiled = False
    args.tile_size = 512
    args.tile_stride = 256
    args.pos_prompt = prompt
    args.neg_prompt = n_prompt
    args.cfg_scale = guidance_scale
    ### input parameters
    args.input = frames_path
    args.n_samples = 1
    args.batch_size = 10
    args.final_size = (480, 854)
    args.config = "configs/inference/my_cldm.yaml"
    ### guidance parameters
    args.guidance = False
    args.g_loss = "w_mse"
    args.g_scale = 0.0
    args.g_start = 1001
    args.g_stop = -1
    args.g_space = "latent"
    args.g_repeat = 1
    ### output parameters
    args.output = " "
    ### common parameters
    args.seed = seed
    args.device = "cuda"

    args.n_frames = n_frames
    ### latent control parameters
    args.warp_period = [0, 0.1]
    args.merge_period = [0, 0]
    args.ToMe_period = [0, 1]
    args.merge_ratio = [0.6, 0]

    if args.task == "sr":
        restored_vid_path = BSRInferenceLoop(args).run()
    elif args.task == "dn":
        restored_vid_path = BIDInferenceLoop(args).run()
    
    torch.cuda.empty_cache()
    return restored_vid_path

########
# demo #
########


intro = """
<div style="text-align:center">
<h1 style="font-weight: 1400; text-align: center; margin-bottom: 7px;">
   DiffIR2VR - <small>Zero-Shot Video Restoration</small>
</h1>
<span>[<a target="_blank" href="https://jimmycv07.github.io/DiffIR2VR_web/">Project page</a>] [<a target="_blank" href="https://huggingface.co/papers/2406.06523">arXiv</a>]</span>
<div style="display:flex; justify-content: center;margin-top: 0.5em">Note that this page is a limited demo of DiffIR2VR. For more configurations, please visit our GitHub page. The code will be released soon!</div>
</div>
"""
 

with gr.Blocks(css="style.css") as demo:

    gr.HTML(intro)
    

    with gr.Tab(label="Super-resolution with DiffBIR"):
        with gr.Row():
            input_video = gr.Video(label="Input Video")
            output_video = gr.Video(label="Restored Video", interactive=False)

        with gr.Row():
            run_button = gr.Button("Restore your video !", visible=True)

        with gr.Accordion('Advanced options', open=False):
            prompt = gr.Textbox(
                label="Prompt",
                max_lines=1, 
                placeholder="describe your video content"
                # value="bear, Van Gogh Style"
            )
            sr_ratio = gr.Slider(label='SR ratio',
                                    minimum=1,
                                    maximum=16,
                                    value=4,
                                    step=1)
            n_frames = gr.Slider(label='Frames',
                                    minimum=1,
                                    maximum=60,
                                    value=10,
                                    step=1)
            n_steps = gr.Slider(label='Steps',
                                    minimum=1,
                                    maximum=100,
                                    value=10,
                                    step=1)
            guidance_scale = gr.Slider(label='Guidance Scale',
                                        minimum=0.1,
                                        maximum=30.0,
                                        value=4.0,
                                        step=0.1)
            seed = gr.Slider(label='Seed',
                                minimum=-1,
                                maximum=1000,
                                step=1,
                                randomize=True)
            n_prompt = gr.Textbox(
                label='Negative Prompt',
                value="low quality, blurry, low-resolution, noisy, unsharp, weird textures"
            )
            task = gr.Textbox(value="sr", visible=False)
        # input_video.change(
        #     fn = update_prompt,
        #     inputs = [input_video],
        #     outputs = [prompt],
        #     queue = False)
        
        run_button.click(fn = DiffBIR_restore,
                        inputs = [input_video, 
                                prompt, 
                                sr_ratio,
                                n_frames,
                                n_steps, 
                                guidance_scale, 
                                seed, 
                                n_prompt,
                                task
                                ],
                                    outputs = [output_video]
                                    )
        gr.Examples(
            examples=get_example("sr"),
            label='Examples',
            inputs=[input_video],
            outputs=[output_video],
            examples_per_page=7
        )

    with gr.Tab(label="Denoise with DiffBIR"):
        with gr.Row():
            input_video = gr.Video(label="Input Video")
            output_video = gr.Video(label="Restored Video", interactive=False)

        with gr.Row():
            run_button = gr.Button("Restore your video !", visible=True)

        with gr.Accordion('Advanced options', open=False):
            prompt = gr.Textbox(
                label="Prompt",
                max_lines=1, 
                placeholder="describe your video content"
                # value="bear, Van Gogh Style"
            )
            n_frames = gr.Slider(label='Frames',
                                    minimum=1,
                                    maximum=60,
                                    value=10,
                                    step=1)
            n_steps = gr.Slider(label='Steps',
                                    minimum=1,
                                    maximum=100,
                                    value=10,
                                    step=1)
            guidance_scale = gr.Slider(label='Guidance Scale',
                                        minimum=0.1,
                                        maximum=30.0,
                                        value=4.0,
                                        step=0.1)
            seed = gr.Slider(label='Seed',
                                minimum=-1,
                                maximum=1000,
                                step=1,
                                randomize=True)
            n_prompt = gr.Textbox(
                label='Negative Prompt',
                value="low quality, blurry, low-resolution, noisy, unsharp, weird textures"
            )
            task = gr.Textbox(value="dn", visible=False)
            sr_ratio = gr.Number(value=1, visible=False)
                        
        # input_video.change(
        #     fn = update_prompt,
        #     inputs = [input_video],
        #     outputs = [prompt],
        #     queue = False)
        run_button.click(fn = DiffBIR_restore,
                        inputs = [input_video, 
                                prompt, 
                                sr_ratio,
                                n_frames,
                                n_steps, 
                                guidance_scale, 
                                seed, 
                                n_prompt,
                                task
                                ],
                                    outputs = [output_video]
                                    )
        gr.Examples(
            examples=get_example("dn"),
            label='Examples',
            inputs=[input_video],
            outputs=[output_video],
            examples_per_page=7
        )

demo.queue()

demo.launch(share=True)