stakelovelace commited on
Commit
457f3a4
1 Parent(s): acc7015

commit from tesla

Browse files
Files changed (1) hide show
  1. app.py +8 -2
app.py CHANGED
@@ -1,5 +1,5 @@
1
  import torch
2
- from transformers import AutoModelForCausalLM, AutoTokenizer, TrainingArguments, Trainer, BertLMHeadModel, BertForSequenceClassification
3
  from datasets import Dataset
4
  import pandas as pd
5
  import csv
@@ -67,6 +67,11 @@ def main(api_name, base_url):
67
  device = get_device() # Get the appropriate device
68
  data = load_data_and_config("train2.csv")
69
  tokenizer = AutoTokenizer.from_pretrained("google/codegemma-2b")
 
 
 
 
 
70
  model = AutoModelForCausalLM.from_pretrained('google/codegemma-2b', is_decoder=True)
71
  #model = BertLMHeadModel.from_pretrained('google/codegemma-2b', is_decoder=True)
72
  # Example assuming you have a prepared dataset for classification
@@ -74,7 +79,8 @@ def main(api_name, base_url):
74
  model.to(device) # Move model to the appropriate device
75
 
76
  train_model(model, tokenizer, data, device)
77
-
 
78
  model.save_pretrained("./fine_tuned_model")
79
  tokenizer.save_pretrained("./fine_tuned_model")
80
 
 
1
  import torch
2
+ from transformers import AutoModelForCausalLM, AutoTokenizer, AutoConfig, TrainingArguments, Trainer, BertLMHeadModel, BertForSequenceClassification
3
  from datasets import Dataset
4
  import pandas as pd
5
  import csv
 
67
  device = get_device() # Get the appropriate device
68
  data = load_data_and_config("train2.csv")
69
  tokenizer = AutoTokenizer.from_pretrained("google/codegemma-2b")
70
+ # Load the configuration for a specific model
71
+ config = AutoConfig.from_pretrained('google/codegemma-2b')
72
+ # Update the activation function
73
+ config.hidden_act = 'gelu_pytorch_tanh' # Set to use approximate GeLU
74
+
75
  model = AutoModelForCausalLM.from_pretrained('google/codegemma-2b', is_decoder=True)
76
  #model = BertLMHeadModel.from_pretrained('google/codegemma-2b', is_decoder=True)
77
  # Example assuming you have a prepared dataset for classification
 
79
  model.to(device) # Move model to the appropriate device
80
 
81
  train_model(model, tokenizer, data, device)
82
+
83
+
84
  model.save_pretrained("./fine_tuned_model")
85
  tokenizer.save_pretrained("./fine_tuned_model")
86