import torch from transformers import AutoModelForCausalLM, AutoTokenizer, AutoConfig, TrainingArguments, Trainer, BertLMHeadModel, BertForSequenceClassification from datasets import Dataset import pandas as pd import csv from transformers import TrainingArguments, Trainer import tensorflow as tf # Check TensorFlow GPU availability print("GPUs Available: ", tf.config.list_physical_devices('GPU')) import os # Setting the environment variable for MPS os.environ['PYTORCH_MPS_HIGH_WATERMARK_RATIO'] = '0.0' def get_device(): """Automatically chooses the best device.""" if torch.cuda.is_available(): return torch.device('cuda') elif torch.backends.mps.is_available(): return torch.device('mps') else: return torch.device('cpu') def load_data_and_config(data_path): """Loads training data from CSV.""" data = [] with open(data_path, newline='', encoding='utf-8') as csvfile: reader = csv.DictReader(csvfile, delimiter=';') for row in reader: data.append({'text': row['description']}) return data def train_model(model, tokenizer, data, device): """Trains the model using the Hugging Face Trainer API.""" inputs = [tokenizer(d['text'], max_length=512, truncation=True, padding='max_length', return_tensors="pt") for d in data] dataset = Dataset.from_dict({ 'input_ids': [x['input_ids'].squeeze() for x in inputs], 'labels': [x['input_ids'].squeeze() for x in inputs] }) training_args = TrainingArguments( output_dir='./results', num_train_epochs=3, per_device_train_batch_size=8, gradient_accumulation_steps=4, fp16=True, # Enable mixed precision warmup_steps=500, weight_decay=0.01, logging_dir='./logs', logging_steps=10, ) trainer = Trainer( model=model, args=training_args, train_dataset=dataset, tokenizer=tokenizer ) trainer.train() # Perform any remaining steps such as logging, saving, etc. trainer.save_model() def main(api_name, base_url): device = get_device() # Get the appropriate device data = load_data_and_config("train2.csv") tokenizer = AutoTokenizer.from_pretrained("google/codegemma-2b") # Load the configuration for a specific model config = AutoConfig.from_pretrained('google/codegemma-2b') # Update the activation function config.hidden_act = 'gelu_pytorch_tanh' # Set to use approximate GeLU model = AutoModelForCausalLM.from_pretrained('google/codegemma-2b', is_decoder=True) #model = BertLMHeadModel.from_pretrained('google/codegemma-2b', is_decoder=True) # Example assuming you have a prepared dataset for classification #model = BertForSequenceClassification.from_pretrained('thenlper/gte-small', num_labels=2, is_decoder=True) # binary classification model.to(device) # Move model to the appropriate device train_model(model, tokenizer, data, device) model.save_pretrained("./fine_tuned_model") tokenizer.save_pretrained("./fine_tuned_model") prompt = "I need to retrieve the latest block on chain using a python script" api_query = generate_api_query(model, tokenizer, prompt, "latest block on chain", api_name, base_url) print(f"Generated code: {api_query}") def generate_api_query(model, tokenizer, prompt, desired_output, api_name, base_url): # Prepare input prompt for the model, ensure tensors are compatible with PyTorch input_ids = tokenizer.encode(f"{prompt} Write an API query to {api_name} to get {desired_output}", return_tensors="pt") # Ensure input_ids are on the same device as the model input_ids = input_ids.to(model.device) # Generate query using model with temperature for randomness output = model.generate(input_ids, max_length=128, truncation=True, padding='max_length', temperature=0.1, do_sample=True) # Decode the generated query tokens query = tokenizer.decode(output[0], skip_special_tokens=True) return f"{base_url}/{query}" if __name__ == "__main__": api_name = "Koios" base_url = "https://api.koios.rest/v1" main(api_name, base_url)