Spaces:
Sleeping
Sleeping
import os | |
import gradio as gr | |
from huggingface_hub import login | |
from transformers import AutoModelForSeq2SeqLM, T5Tokenizer | |
from peft import PeftModel, PeftConfig | |
# Hugging Face login | |
token = os.environ.get("token") | |
if not token: | |
raise ValueError("Token not found. Please set the 'token' environment variable.") | |
login(token) | |
print("Login is successful") | |
# Model and tokenizer setup | |
MODEL_NAME = "google/flan-t5-base" | |
try: | |
tokenizer = T5Tokenizer.from_pretrained(MODEL_NAME, use_auth_token=token) | |
config = PeftConfig.from_pretrained("Komal-patra/results") | |
base_model = AutoModelForSeq2SeqLM.from_pretrained(MODEL_NAME) | |
model = PeftModel.from_pretrained(base_model, "Komal-patra/results") | |
except Exception as e: | |
print(f"Error loading model: {e}") | |
raise | |
# Text generation function | |
def generate_text(prompt, max_length=512): | |
inputs = tokenizer(prompt, return_tensors="pt") | |
outputs = model.generate( | |
input_ids=inputs["input_ids"], | |
max_length=max_length, | |
num_beams=1, | |
repetition_penalty=2.2 | |
) | |
print(outputs) | |
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
return generated_text | |
# Custom CSS for the UI | |
custom_css = """ | |
.message.pending { | |
background: #A8C4D6; | |
} | |
/* Response message */ | |
.message.bot.svelte-1s78gfg.message-bubble-border { | |
border-color: #266B99; | |
} | |
/* User message */ | |
.message.user.svelte-1s78gfg.message-bubble-border { | |
background: #9DDDF9; | |
border-color: #9DDDF9; | |
} | |
/* For both user and response message as per the document */ | |
span.md.svelte-8tpqd2.chatbot.prose p { | |
color: #266B99; | |
} | |
/* Chatbot container */ | |
.gradio-container { | |
background: #84d5f7; /* Light blue background */ | |
color: white; /* Light text color */ | |
} | |
/* RED (Hex: #DB1616) for action buttons and links only */ | |
.clear-btn { | |
background: #DB1616; | |
color: white; | |
} | |
/* Primary colors are set to be used for all sorts */ | |
.submit-btn { | |
background: #266B99; | |
color: white; | |
} | |
/* Add icons to messages */ | |
.message.user.svelte-1s78gfg { | |
display: flex; | |
align-items: center; | |
} | |
.message.user.svelte-1s78gfg:before { | |
content: url('file=Komal-patra/EU_AI_ACT/user_icon.jpeg'); | |
margin-right: 8px; | |
} | |
.message.bot.svelte-1s78gfg { | |
display: flex; | |
align-items: center; | |
} | |
.message.bot.svelte-1s78gfg:before { | |
content: url('file=Komal-patra/EU_AI_ACT/orcawise_image.png'); | |
margin-right: 8px; | |
} | |
/* Enable scrolling for the chatbot messages */ | |
.chatbot .messages { | |
max-height: 500px; /* Adjust as needed */ | |
overflow-y: auto; | |
} | |
""" | |
# Gradio interface setup | |
with gr.Blocks(css=custom_css) as demo: | |
chatbot = gr.Chatbot() | |
msg = gr.Textbox(placeholder="Ask your question...", show_label=False) | |
submit_button = gr.Button("Submit", elem_classes="submit-btn") | |
clear = gr.Button("Clear", elem_classes="clear-btn") | |
# Function to handle user input | |
def user(user_message, history): | |
return "", history + [[user_message, None]] | |
# Function to handle bot response | |
def bot(history): | |
if len(history) == 1: # Check if it's the first interaction | |
bot_message = "Hello! I'm here to help you with any questions about the EU AI Act. What would you like to know?" | |
history[-1][1] = bot_message # Add welcome message to history | |
else: | |
history[-1][1] = "" # Clear the last bot message | |
previous_message = history[-1][0] # Access the previous user message | |
bot_message = generate_text(previous_message) # Generate response based on previous message | |
history[-1][1] = bot_message # Update the last bot message | |
return history | |
submit_button.click(user, [msg, chatbot], [msg, chatbot], queue=False).then( | |
bot, chatbot, chatbot | |
) | |
msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then( | |
bot, chatbot, chatbot | |
) | |
clear.click(lambda: None, None, chatbot, queue=False) | |
demo.launch() | |