import os import gradio as gr from huggingface_hub import login from transformers import AutoModelForSeq2SeqLM, T5Tokenizer from peft import PeftModel, PeftConfig # Hugging Face login token = os.environ.get("token") if not token: raise ValueError("Token not found. Please set the 'token' environment variable.") login(token) print("Login is successful") # Model and tokenizer setup MODEL_NAME = "google/flan-t5-base" try: tokenizer = T5Tokenizer.from_pretrained(MODEL_NAME, use_auth_token=token) config = PeftConfig.from_pretrained("Komal-patra/results") base_model = AutoModelForSeq2SeqLM.from_pretrained(MODEL_NAME) model = PeftModel.from_pretrained(base_model, "Komal-patra/results") except Exception as e: print(f"Error loading model: {e}") raise # Text generation function def generate_text(prompt, max_length=512): inputs = tokenizer(prompt, return_tensors="pt") outputs = model.generate( input_ids=inputs["input_ids"], max_length=max_length, num_beams=1, repetition_penalty=2.2 ) print(outputs) generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True) return generated_text # Custom CSS for the UI custom_css = """ .message.pending { background: #A8C4D6; } /* Response message */ .message.bot.svelte-1s78gfg.message-bubble-border { border-color: #266B99; } /* User message */ .message.user.svelte-1s78gfg.message-bubble-border { background: #9DDDF9; border-color: #9DDDF9; } /* For both user and response message as per the document */ span.md.svelte-8tpqd2.chatbot.prose p { color: #266B99; } /* Chatbot container */ .gradio-container { background: #84d5f7; /* Light blue background */ color: white; /* Light text color */ } /* RED (Hex: #DB1616) for action buttons and links only */ .clear-btn { background: #DB1616; color: white; } /* Primary colors are set to be used for all sorts */ .submit-btn { background: #266B99; color: white; } /* Add icons to messages */ .message.user.svelte-1s78gfg { display: flex; align-items: center; } .message.user.svelte-1s78gfg:before { content: url('file=Komal-patra/EU_AI_ACT/user_icon.jpeg'); margin-right: 8px; } .message.bot.svelte-1s78gfg { display: flex; align-items: center; } .message.bot.svelte-1s78gfg:before { content: url('file=Komal-patra/EU_AI_ACT/orcawise_image.png'); margin-right: 8px; } /* Enable scrolling for the chatbot messages */ .chatbot .messages { max-height: 500px; /* Adjust as needed */ overflow-y: auto; } """ # Gradio interface setup with gr.Blocks(css=custom_css) as demo: chatbot = gr.Chatbot() msg = gr.Textbox(placeholder="Ask your question...", show_label=False) submit_button = gr.Button("Submit", elem_classes="submit-btn") clear = gr.Button("Clear", elem_classes="clear-btn") # Function to handle user input def user(user_message, history): return "", history + [[user_message, None]] # Function to handle bot response def bot(history): if len(history) == 1: # Check if it's the first interaction bot_message = "Hello! I'm here to help you with any questions about the EU AI Act. What would you like to know?" history[-1][1] = bot_message # Add welcome message to history else: history[-1][1] = "" # Clear the last bot message previous_message = history[-1][0] # Access the previous user message bot_message = generate_text(previous_message) # Generate response based on previous message history[-1][1] = bot_message # Update the last bot message return history submit_button.click(user, [msg, chatbot], [msg, chatbot], queue=False).then( bot, chatbot, chatbot ) msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then( bot, chatbot, chatbot ) clear.click(lambda: None, None, chatbot, queue=False) demo.launch()