Kotomiya07
commited on
Commit
•
98ab92d
1
Parent(s):
ed8533e
Add application file
Browse files- __pycache__/config.cpython-310.pyc +0 -0
- __pycache__/tags.cpython-310.pyc +0 -0
- __pycache__/utils.cpython-310.pyc +0 -0
- app.py +315 -5
- requirements.txt +3 -1
- tags.py +400 -0
__pycache__/config.cpython-310.pyc
CHANGED
Binary files a/__pycache__/config.cpython-310.pyc and b/__pycache__/config.cpython-310.pyc differ
|
|
__pycache__/tags.cpython-310.pyc
ADDED
Binary file (9.11 kB). View file
|
|
__pycache__/utils.cpython-310.pyc
CHANGED
Binary files a/__pycache__/utils.cpython-310.pyc and b/__pycache__/utils.cpython-310.pyc differ
|
|
app.py
CHANGED
@@ -11,6 +11,7 @@ from PIL import Image, PngImagePlugin
|
|
11 |
from datetime import datetime
|
12 |
from diffusers.models import AutoencoderKL
|
13 |
from diffusers import StableDiffusionXLPipeline, StableDiffusionXLImg2ImgPipeline
|
|
|
14 |
|
15 |
logging.basicConfig(level=logging.INFO)
|
16 |
logger = logging.getLogger(__name__)
|
@@ -38,10 +39,10 @@ torch.backends.cudnn.benchmark = False
|
|
38 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
39 |
|
40 |
|
41 |
-
def load_pipeline(model_name):
|
42 |
vae = AutoencoderKL.from_pretrained(
|
43 |
-
|
44 |
-
torch_dtype=
|
45 |
)
|
46 |
pipeline = (
|
47 |
StableDiffusionXLPipeline.from_single_file
|
@@ -52,7 +53,7 @@ def load_pipeline(model_name):
|
|
52 |
pipe = pipeline(
|
53 |
model_name,
|
54 |
vae=vae,
|
55 |
-
torch_dtype=
|
56 |
custom_pipeline="lpw_stable_diffusion_xl",
|
57 |
use_safetensors=True,
|
58 |
add_watermarker=False,
|
@@ -195,7 +196,9 @@ if torch.cuda.is_available():
|
|
195 |
pipe = load_pipeline(MODEL)
|
196 |
logger.info("Loaded on Device!")
|
197 |
else:
|
198 |
-
|
|
|
|
|
199 |
|
200 |
styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in config.style_list}
|
201 |
quality_prompt = {
|
@@ -204,6 +207,14 @@ quality_prompt = {
|
|
204 |
|
205 |
wildcard_files = utils.load_wildcard_files("wildcard")
|
206 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
207 |
with gr.Blocks(css="style.css", theme="NoCrypt/[email protected]") as demo:
|
208 |
title = gr.HTML(
|
209 |
f"""<h1><span>{DESCRIPTION}</span></h1>""",
|
@@ -321,6 +332,305 @@ with gr.Blocks(css="style.css", theme="NoCrypt/[email protected]") as demo:
|
|
321 |
step=1,
|
322 |
value=28,
|
323 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
324 |
with gr.Column(scale=3):
|
325 |
with gr.Blocks():
|
326 |
run_button = gr.Button("Generate", variant="primary")
|
|
|
11 |
from datetime import datetime
|
12 |
from diffusers.models import AutoencoderKL
|
13 |
from diffusers import StableDiffusionXLPipeline, StableDiffusionXLImg2ImgPipeline
|
14 |
+
import tags
|
15 |
|
16 |
logging.basicConfig(level=logging.INFO)
|
17 |
logger = logging.getLogger(__name__)
|
|
|
39 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
40 |
|
41 |
|
42 |
+
def load_pipeline(model_name, vae_model="madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16):
|
43 |
vae = AutoencoderKL.from_pretrained(
|
44 |
+
vae_model,
|
45 |
+
torch_dtype=torch_dtype,
|
46 |
)
|
47 |
pipeline = (
|
48 |
StableDiffusionXLPipeline.from_single_file
|
|
|
53 |
pipe = pipeline(
|
54 |
model_name,
|
55 |
vae=vae,
|
56 |
+
torch_dtype=torch_dtype,
|
57 |
custom_pipeline="lpw_stable_diffusion_xl",
|
58 |
use_safetensors=True,
|
59 |
add_watermarker=False,
|
|
|
196 |
pipe = load_pipeline(MODEL)
|
197 |
logger.info("Loaded on Device!")
|
198 |
else:
|
199 |
+
logger.info("CPU MODE")
|
200 |
+
pipe = load_pipeline(MODEL, vae_model="stabilityai/sdxl-vae", torch_dtype=torch.float32)
|
201 |
+
logger.info("Loaded on Device!")
|
202 |
|
203 |
styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in config.style_list}
|
204 |
quality_prompt = {
|
|
|
207 |
|
208 |
wildcard_files = utils.load_wildcard_files("wildcard")
|
209 |
|
210 |
+
COPY_ACTION_JS = """\
|
211 |
+
(inputs, _outputs) => {
|
212 |
+
// inputs is the string value of the input_text
|
213 |
+
if (inputs.trim() !== "") {
|
214 |
+
navigator.clipboard.writeText(inputs);
|
215 |
+
}
|
216 |
+
}"""
|
217 |
+
|
218 |
with gr.Blocks(css="style.css", theme="NoCrypt/[email protected]") as demo:
|
219 |
title = gr.HTML(
|
220 |
f"""<h1><span>{DESCRIPTION}</span></h1>""",
|
|
|
332 |
step=1,
|
333 |
value=28,
|
334 |
)
|
335 |
+
|
336 |
+
# danbooru-tags-upsampler
|
337 |
+
with gr.Tab("tags"):
|
338 |
+
with gr.Row():
|
339 |
+
with gr.Column():
|
340 |
+
|
341 |
+
# with gr.Group(
|
342 |
+
# visible=False,
|
343 |
+
# ):
|
344 |
+
# model_backend_radio = gr.Radio(
|
345 |
+
# label="Model backend",
|
346 |
+
# choices=list(MODEL_BACKEND_MAP.keys()),
|
347 |
+
# value="Default",
|
348 |
+
# interactive=True,
|
349 |
+
# )
|
350 |
+
|
351 |
+
with gr.Group():
|
352 |
+
rating_dropdown = gr.Dropdown(
|
353 |
+
label="Rating",
|
354 |
+
choices=[
|
355 |
+
"general",
|
356 |
+
"sensitive",
|
357 |
+
"questionable",
|
358 |
+
"explicit",
|
359 |
+
],
|
360 |
+
value="general",
|
361 |
+
)
|
362 |
+
|
363 |
+
with gr.Group():
|
364 |
+
copyright_tags_mode_dropdown = gr.Dropdown(
|
365 |
+
label="Copyright tags mode",
|
366 |
+
choices=[
|
367 |
+
"None",
|
368 |
+
"Original",
|
369 |
+
# "Auto", # TODO: implement these modes
|
370 |
+
# "Random",
|
371 |
+
"Custom",
|
372 |
+
],
|
373 |
+
value="None",
|
374 |
+
interactive=True,
|
375 |
+
)
|
376 |
+
copyright_tags_dropdown = gr.Dropdown(
|
377 |
+
label="Copyright tags",
|
378 |
+
choices=tags.get_copyright_tags_list(), # type: ignore
|
379 |
+
value=[],
|
380 |
+
multiselect=True,
|
381 |
+
visible=False,
|
382 |
+
)
|
383 |
+
|
384 |
+
def on_change_copyright_tags_dropdouwn(mode: str):
|
385 |
+
kwargs: dict = {"visible": mode == "Custom"}
|
386 |
+
if mode == "Original":
|
387 |
+
kwargs["value"] = ["original"]
|
388 |
+
elif mode == "None":
|
389 |
+
kwargs["value"] = []
|
390 |
+
|
391 |
+
return gr.update(**kwargs)
|
392 |
+
|
393 |
+
with gr.Group():
|
394 |
+
character_tags_mode_dropdown = gr.Dropdown(
|
395 |
+
label="Character tags mode",
|
396 |
+
choices=[
|
397 |
+
"None",
|
398 |
+
# "Auto", # TODO: implement these modes
|
399 |
+
# "Random",
|
400 |
+
"Custom",
|
401 |
+
],
|
402 |
+
value="None",
|
403 |
+
interactive=True,
|
404 |
+
)
|
405 |
+
character_tags_dropdown = gr.Dropdown(
|
406 |
+
label="Character tags",
|
407 |
+
choices=tags.get_character_tags_list(), # type: ignore
|
408 |
+
value=[],
|
409 |
+
multiselect=True,
|
410 |
+
visible=False,
|
411 |
+
)
|
412 |
+
|
413 |
+
def on_change_character_tags_dropdouwn(mode: str):
|
414 |
+
kwargs: dict = {"visible": mode == "Custom"}
|
415 |
+
if mode == "None":
|
416 |
+
kwargs["value"] = []
|
417 |
+
|
418 |
+
return gr.update(**kwargs)
|
419 |
+
|
420 |
+
with gr.Group():
|
421 |
+
general_tags_textbox = gr.Textbox(
|
422 |
+
label="General tags (the condition to generate tags)",
|
423 |
+
value="",
|
424 |
+
placeholder="1girl, ...",
|
425 |
+
lines=4,
|
426 |
+
)
|
427 |
+
|
428 |
+
ban_tags_textbox = gr.Textbox(
|
429 |
+
label="Ban tags (tags in this field never appear in generation)",
|
430 |
+
value="",
|
431 |
+
placeholder="official alternate cosutme, english text,...",
|
432 |
+
lines=2,
|
433 |
+
)
|
434 |
+
|
435 |
+
generate_btn = gr.Button("Generate", variant="primary")
|
436 |
+
|
437 |
+
with gr.Accordion(label="Generation config (advanced)", open=False):
|
438 |
+
with gr.Group():
|
439 |
+
do_cfg_check = gr.Checkbox(
|
440 |
+
label="Do CFG (Classifier Free Guidance)",
|
441 |
+
value=False,
|
442 |
+
)
|
443 |
+
cfg_scale_slider = gr.Slider(
|
444 |
+
label="CFG scale",
|
445 |
+
maximum=3.0,
|
446 |
+
minimum=0.1,
|
447 |
+
step=0.1,
|
448 |
+
value=1.5,
|
449 |
+
visible=False,
|
450 |
+
)
|
451 |
+
negative_tags_textbox = gr.Textbox(
|
452 |
+
label="Negative prompt",
|
453 |
+
placeholder="simple background, ...",
|
454 |
+
value="",
|
455 |
+
lines=2,
|
456 |
+
visible=False,
|
457 |
+
)
|
458 |
+
|
459 |
+
def on_change_do_cfg_check(do_cfg: bool):
|
460 |
+
kwargs: dict = {"visible": do_cfg}
|
461 |
+
return gr.update(**kwargs), gr.update(**kwargs)
|
462 |
+
|
463 |
+
do_cfg_check.change(
|
464 |
+
on_change_do_cfg_check,
|
465 |
+
inputs=[do_cfg_check],
|
466 |
+
outputs=[cfg_scale_slider, negative_tags_textbox],
|
467 |
+
)
|
468 |
+
|
469 |
+
with gr.Group():
|
470 |
+
total_token_length_radio = gr.Radio(
|
471 |
+
label="Total token length",
|
472 |
+
choices=list(tags.get_length_tags().keys()),
|
473 |
+
value="long",
|
474 |
+
)
|
475 |
+
|
476 |
+
with gr.Group():
|
477 |
+
max_new_tokens_slider = gr.Slider(
|
478 |
+
label="Max new tokens",
|
479 |
+
maximum=256,
|
480 |
+
minimum=1,
|
481 |
+
step=1,
|
482 |
+
value=128,
|
483 |
+
)
|
484 |
+
min_new_tokens_slider = gr.Slider(
|
485 |
+
label="Min new tokens",
|
486 |
+
maximum=255,
|
487 |
+
minimum=0,
|
488 |
+
step=1,
|
489 |
+
value=0,
|
490 |
+
)
|
491 |
+
temperature_slider = gr.Slider(
|
492 |
+
label="Temperature (larger is more random)",
|
493 |
+
maximum=1.0,
|
494 |
+
minimum=0.0,
|
495 |
+
step=0.1,
|
496 |
+
value=1.0,
|
497 |
+
)
|
498 |
+
top_p_slider = gr.Slider(
|
499 |
+
label="Top p (larger is more random)",
|
500 |
+
maximum=1.0,
|
501 |
+
minimum=0.0,
|
502 |
+
step=0.1,
|
503 |
+
value=1.0,
|
504 |
+
)
|
505 |
+
top_k_slider = gr.Slider(
|
506 |
+
label="Top k (larger is more random)",
|
507 |
+
maximum=500,
|
508 |
+
minimum=1,
|
509 |
+
step=1,
|
510 |
+
value=100,
|
511 |
+
)
|
512 |
+
num_beams_slider = gr.Slider(
|
513 |
+
label="Number of beams (smaller is more random)",
|
514 |
+
maximum=10,
|
515 |
+
minimum=1,
|
516 |
+
step=1,
|
517 |
+
value=1,
|
518 |
+
)
|
519 |
+
|
520 |
+
with gr.Column():
|
521 |
+
with gr.Group():
|
522 |
+
output_tags_natural = gr.Textbox(
|
523 |
+
label="Generation result",
|
524 |
+
# placeholder="tags will be here",
|
525 |
+
interactive=False,
|
526 |
+
)
|
527 |
+
output_tags_natural_copy_btn = gr.Button("Copy", visible=False)
|
528 |
+
output_tags_natural_copy_btn.click(
|
529 |
+
fn=tags.copy_text,
|
530 |
+
inputs=[output_tags_natural],
|
531 |
+
js=COPY_ACTION_JS,
|
532 |
+
)
|
533 |
+
|
534 |
+
with gr.Group():
|
535 |
+
output_tags_general_only = gr.Textbox(
|
536 |
+
label="General tags only (sorted)",
|
537 |
+
interactive=False,
|
538 |
+
)
|
539 |
+
output_tags_general_only_copy_btn = gr.Button("Copy", visible=False)
|
540 |
+
output_tags_general_only_copy_btn.click(
|
541 |
+
fn=tags.copy_text,
|
542 |
+
inputs=[output_tags_general_only],
|
543 |
+
js=COPY_ACTION_JS,
|
544 |
+
)
|
545 |
+
|
546 |
+
with gr.Group():
|
547 |
+
output_tags_animagine = gr.Textbox(
|
548 |
+
label="Output tags (AnimagineXL v3 style order)",
|
549 |
+
# placeholder="tags will be here in Animagine v3 style order",
|
550 |
+
interactive=False,
|
551 |
+
)
|
552 |
+
output_tags_animagine_copy_btn = gr.Button("Copy", visible=False)
|
553 |
+
output_tags_animagine_copy_btn.click(
|
554 |
+
fn=tags.copy_text,
|
555 |
+
inputs=[output_tags_animagine],
|
556 |
+
js=COPY_ACTION_JS,
|
557 |
+
)
|
558 |
+
|
559 |
+
with gr.Accordion(label="Metadata", open=False):
|
560 |
+
_model_backend_md = gr.Markdown(
|
561 |
+
f"Model backend: {tags.get_model_backend()}",
|
562 |
+
)
|
563 |
+
input_prompt_raw = gr.Textbox(
|
564 |
+
label="Input prompt (raw)",
|
565 |
+
interactive=False,
|
566 |
+
lines=4,
|
567 |
+
)
|
568 |
+
|
569 |
+
output_tags_raw = gr.Textbox(
|
570 |
+
label="Output tags (raw)",
|
571 |
+
interactive=False,
|
572 |
+
lines=4,
|
573 |
+
)
|
574 |
+
|
575 |
+
elapsed_time_md = gr.Markdown(value="Waiting to generate...")
|
576 |
+
|
577 |
+
copyright_tags_mode_dropdown.change(
|
578 |
+
on_change_copyright_tags_dropdouwn,
|
579 |
+
inputs=[copyright_tags_mode_dropdown],
|
580 |
+
outputs=[copyright_tags_dropdown],
|
581 |
+
)
|
582 |
+
character_tags_mode_dropdown.change(
|
583 |
+
on_change_character_tags_dropdouwn,
|
584 |
+
inputs=[character_tags_mode_dropdown],
|
585 |
+
outputs=[character_tags_dropdown],
|
586 |
+
)
|
587 |
+
|
588 |
+
generate_btn.click(
|
589 |
+
tags.handle_inputs,
|
590 |
+
inputs=[
|
591 |
+
rating_dropdown,
|
592 |
+
copyright_tags_dropdown,
|
593 |
+
character_tags_dropdown,
|
594 |
+
general_tags_textbox,
|
595 |
+
ban_tags_textbox,
|
596 |
+
do_cfg_check,
|
597 |
+
cfg_scale_slider,
|
598 |
+
negative_tags_textbox,
|
599 |
+
total_token_length_radio,
|
600 |
+
max_new_tokens_slider,
|
601 |
+
min_new_tokens_slider,
|
602 |
+
temperature_slider,
|
603 |
+
top_p_slider,
|
604 |
+
top_k_slider,
|
605 |
+
num_beams_slider,
|
606 |
+
# model_backend_radio,
|
607 |
+
],
|
608 |
+
outputs=[
|
609 |
+
output_tags_natural,
|
610 |
+
output_tags_general_only,
|
611 |
+
output_tags_animagine,
|
612 |
+
input_prompt_raw,
|
613 |
+
output_tags_raw,
|
614 |
+
elapsed_time_md,
|
615 |
+
output_tags_natural_copy_btn,
|
616 |
+
output_tags_general_only_copy_btn,
|
617 |
+
output_tags_animagine_copy_btn,
|
618 |
+
],
|
619 |
+
)
|
620 |
+
|
621 |
+
gr.Examples(
|
622 |
+
examples=[
|
623 |
+
["1girl, solo, from side", ""],
|
624 |
+
["1girl, solo, abstract, from above", ""],
|
625 |
+
["2girls, yuri", "1boy"],
|
626 |
+
["no humans, scenery, summer, day", ""],
|
627 |
+
],
|
628 |
+
inputs=[
|
629 |
+
general_tags_textbox,
|
630 |
+
ban_tags_textbox,
|
631 |
+
],
|
632 |
+
)
|
633 |
+
|
634 |
with gr.Column(scale=3):
|
635 |
with gr.Blocks():
|
636 |
run_button = gr.Button("Generate", variant="primary")
|
requirements.txt
CHANGED
@@ -8,4 +8,6 @@ torch==2.0.1
|
|
8 |
transformers==4.38.1
|
9 |
omegaconf==2.3.0
|
10 |
timm==0.9.10
|
11 |
-
optimum[onnxruntime]@git+https://github.com/huggingface/optimum.git
|
|
|
|
|
|
8 |
transformers==4.38.1
|
9 |
omegaconf==2.3.0
|
10 |
timm==0.9.10
|
11 |
+
#optimum[onnxruntime]@git+https://github.com/huggingface/optimum.git
|
12 |
+
transformers==4.38.0
|
13 |
+
optimum[onnxruntime]==1.17.1
|
tags.py
ADDED
@@ -0,0 +1,400 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from pathlib import Path
|
2 |
+
import time
|
3 |
+
import os
|
4 |
+
|
5 |
+
import torch
|
6 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
7 |
+
|
8 |
+
from optimum.onnxruntime import ORTModelForCausalLM
|
9 |
+
|
10 |
+
|
11 |
+
import gradio as gr
|
12 |
+
|
13 |
+
MODEL_NAME = (
|
14 |
+
os.environ.get("MODEL_NAME")
|
15 |
+
if os.environ.get("MODEL_NAME") is not None
|
16 |
+
else "p1atdev/dart-v1-sft"
|
17 |
+
)
|
18 |
+
HF_READ_TOKEN = os.environ.get("HF_READ_TOKEN")
|
19 |
+
MODEL_BACKEND = (
|
20 |
+
os.environ.get("MODEL_BACKEND")
|
21 |
+
if os.environ.get("MODEL_BACKEND") is not None
|
22 |
+
else "ONNX (quantized)"
|
23 |
+
)
|
24 |
+
|
25 |
+
assert isinstance(MODEL_NAME, str)
|
26 |
+
assert isinstance(MODEL_BACKEND, str)
|
27 |
+
|
28 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
29 |
+
MODEL_NAME,
|
30 |
+
trust_remote_code=True,
|
31 |
+
token=HF_READ_TOKEN,
|
32 |
+
)
|
33 |
+
model = {
|
34 |
+
"default": AutoModelForCausalLM.from_pretrained(
|
35 |
+
MODEL_NAME,
|
36 |
+
token=HF_READ_TOKEN,
|
37 |
+
),
|
38 |
+
"ort": ORTModelForCausalLM.from_pretrained(
|
39 |
+
MODEL_NAME,
|
40 |
+
),
|
41 |
+
"ort_qantized": ORTModelForCausalLM.from_pretrained(
|
42 |
+
MODEL_NAME,
|
43 |
+
file_name="model_quantized.onnx",
|
44 |
+
),
|
45 |
+
}
|
46 |
+
|
47 |
+
MODEL_BACKEND_MAP = {
|
48 |
+
"Default": "default",
|
49 |
+
"ONNX (normal)": "ort",
|
50 |
+
"ONNX (quantized)": "ort_qantized",
|
51 |
+
}
|
52 |
+
|
53 |
+
try:
|
54 |
+
model["default"].to("cuda")
|
55 |
+
except:
|
56 |
+
print("No GPU")
|
57 |
+
|
58 |
+
try:
|
59 |
+
model["default"] = torch.compile(model["default"])
|
60 |
+
except:
|
61 |
+
print("torch.compile is not supported")
|
62 |
+
|
63 |
+
BOS = "<|bos|>"
|
64 |
+
EOS = "<|eos|>"
|
65 |
+
RATING_BOS = "<rating>"
|
66 |
+
RATING_EOS = "</rating>"
|
67 |
+
COPYRIGHT_BOS = "<copyright>"
|
68 |
+
COPYRIGHT_EOS = "</copyright>"
|
69 |
+
CHARACTER_BOS = "<character>"
|
70 |
+
CHARACTER_EOS = "</character>"
|
71 |
+
GENERAL_BOS = "<general>"
|
72 |
+
GENERAL_EOS = "</general>"
|
73 |
+
|
74 |
+
INPUT_END = "<|input_end|>"
|
75 |
+
|
76 |
+
LENGTH_VERY_SHORT = "<|very_short|>"
|
77 |
+
LENGTH_SHORT = "<|short|>"
|
78 |
+
LENGTH_LONG = "<|long|>"
|
79 |
+
LENGTH_VERY_LONG = "<|very_long|>"
|
80 |
+
|
81 |
+
RATING_BOS_ID = tokenizer.convert_tokens_to_ids(RATING_BOS)
|
82 |
+
RATING_EOS_ID = tokenizer.convert_tokens_to_ids(RATING_EOS)
|
83 |
+
COPYRIGHT_BOS_ID = tokenizer.convert_tokens_to_ids(COPYRIGHT_BOS)
|
84 |
+
COPYRIGHT_EOS_ID = tokenizer.convert_tokens_to_ids(COPYRIGHT_EOS)
|
85 |
+
CHARACTER_BOS_ID = tokenizer.convert_tokens_to_ids(CHARACTER_BOS)
|
86 |
+
CHARACTER_EOS_ID = tokenizer.convert_tokens_to_ids(CHARACTER_EOS)
|
87 |
+
GENERAL_BOS_ID = tokenizer.convert_tokens_to_ids(GENERAL_BOS)
|
88 |
+
GENERAL_EOS_ID = tokenizer.convert_tokens_to_ids(GENERAL_EOS)
|
89 |
+
|
90 |
+
assert isinstance(RATING_BOS_ID, int)
|
91 |
+
assert isinstance(RATING_EOS_ID, int)
|
92 |
+
assert isinstance(COPYRIGHT_BOS_ID, int)
|
93 |
+
assert isinstance(COPYRIGHT_EOS_ID, int)
|
94 |
+
assert isinstance(CHARACTER_BOS_ID, int)
|
95 |
+
assert isinstance(CHARACTER_EOS_ID, int)
|
96 |
+
assert isinstance(GENERAL_BOS_ID, int)
|
97 |
+
assert isinstance(GENERAL_EOS_ID, int)
|
98 |
+
|
99 |
+
SPECIAL_TAGS = [
|
100 |
+
BOS,
|
101 |
+
EOS,
|
102 |
+
RATING_BOS,
|
103 |
+
RATING_EOS,
|
104 |
+
COPYRIGHT_BOS,
|
105 |
+
COPYRIGHT_EOS,
|
106 |
+
CHARACTER_BOS,
|
107 |
+
CHARACTER_EOS,
|
108 |
+
GENERAL_BOS,
|
109 |
+
GENERAL_EOS,
|
110 |
+
INPUT_END,
|
111 |
+
LENGTH_VERY_SHORT,
|
112 |
+
LENGTH_SHORT,
|
113 |
+
LENGTH_LONG,
|
114 |
+
LENGTH_VERY_LONG,
|
115 |
+
]
|
116 |
+
|
117 |
+
SPECIAL_TAG_IDS = tokenizer.convert_tokens_to_ids(SPECIAL_TAGS)
|
118 |
+
assert isinstance(SPECIAL_TAG_IDS, list)
|
119 |
+
assert all([token_id != tokenizer.unk_token_id for token_id in SPECIAL_TAG_IDS])
|
120 |
+
|
121 |
+
RATING_TAGS = {
|
122 |
+
"sfw": "rating:sfw",
|
123 |
+
"nsfw": "rating:nsfw",
|
124 |
+
"general": "rating:general",
|
125 |
+
"sensitive": "rating:sensitive",
|
126 |
+
"questionable": "rating:questionable",
|
127 |
+
"explicit": "rating:explicit",
|
128 |
+
}
|
129 |
+
RATING_TAG_IDS = {k: tokenizer.convert_tokens_to_ids(v) for k, v in RATING_TAGS.items()}
|
130 |
+
|
131 |
+
LENGTH_TAGS = {
|
132 |
+
"very short": LENGTH_VERY_SHORT,
|
133 |
+
"short": LENGTH_SHORT,
|
134 |
+
"long": LENGTH_LONG,
|
135 |
+
"very long": LENGTH_VERY_LONG,
|
136 |
+
}
|
137 |
+
|
138 |
+
|
139 |
+
def load_tags(path: str | Path):
|
140 |
+
if isinstance(path, str):
|
141 |
+
path = Path(path)
|
142 |
+
|
143 |
+
with open(path, "r", encoding="utf-8") as file:
|
144 |
+
lines = [line.strip() for line in file.readlines() if line.strip() != ""]
|
145 |
+
|
146 |
+
return lines
|
147 |
+
|
148 |
+
|
149 |
+
COPYRIGHT_TAGS_LIST: list[str] = load_tags("./tags/copyright.txt")
|
150 |
+
CHARACTER_TAGS_LIST: list[str] = load_tags("./tags/character.txt")
|
151 |
+
PEOPLE_TAGS_LIST: list[str] = load_tags("./tags/people.txt")
|
152 |
+
|
153 |
+
PEOPLE_TAG_IDS_LIST = tokenizer.convert_tokens_to_ids(PEOPLE_TAGS_LIST)
|
154 |
+
|
155 |
+
assert isinstance(PEOPLE_TAG_IDS_LIST, list)
|
156 |
+
|
157 |
+
|
158 |
+
@torch.no_grad()
|
159 |
+
def generate(
|
160 |
+
input_text: str,
|
161 |
+
model_backend: str,
|
162 |
+
max_new_tokens: int = 128,
|
163 |
+
min_new_tokens: int = 0,
|
164 |
+
do_sample: bool = True,
|
165 |
+
temperature: float = 1.0,
|
166 |
+
top_p: float = 1,
|
167 |
+
top_k: int = 20,
|
168 |
+
num_beams: int = 1,
|
169 |
+
bad_words_ids: list[int] | None = None,
|
170 |
+
cfg_scale: float = 1.5,
|
171 |
+
negative_input_text: str | None = None,
|
172 |
+
) -> list[int]:
|
173 |
+
inputs = tokenizer(
|
174 |
+
input_text,
|
175 |
+
return_tensors="pt",
|
176 |
+
).input_ids.to(model[MODEL_BACKEND_MAP[model_backend]].device)
|
177 |
+
negative_inputs = (
|
178 |
+
tokenizer(
|
179 |
+
negative_input_text,
|
180 |
+
return_tensors="pt",
|
181 |
+
).input_ids.to(model[MODEL_BACKEND_MAP[model_backend]].device)
|
182 |
+
if negative_input_text is not None
|
183 |
+
else None
|
184 |
+
)
|
185 |
+
|
186 |
+
generated = model[MODEL_BACKEND_MAP[model_backend]].generate(
|
187 |
+
inputs,
|
188 |
+
max_new_tokens=max_new_tokens,
|
189 |
+
min_new_tokens=min_new_tokens,
|
190 |
+
do_sample=do_sample,
|
191 |
+
temperature=temperature,
|
192 |
+
top_p=top_p,
|
193 |
+
top_k=top_k,
|
194 |
+
num_beams=num_beams,
|
195 |
+
bad_words_ids=(
|
196 |
+
[[token] for token in bad_words_ids] if bad_words_ids is not None else None
|
197 |
+
),
|
198 |
+
negative_prompt_ids=negative_inputs,
|
199 |
+
guidance_scale=cfg_scale,
|
200 |
+
no_repeat_ngram_size=1,
|
201 |
+
)[0]
|
202 |
+
|
203 |
+
return generated.tolist()
|
204 |
+
|
205 |
+
|
206 |
+
def decode_normal(token_ids: list[int], skip_special_tokens: bool = True):
|
207 |
+
return tokenizer.decode(token_ids, skip_special_tokens=skip_special_tokens)
|
208 |
+
|
209 |
+
|
210 |
+
def decode_general_only(token_ids: list[int]):
|
211 |
+
token_ids = token_ids[token_ids.index(GENERAL_BOS_ID) :]
|
212 |
+
decoded = tokenizer.decode(token_ids, skip_special_tokens=True)
|
213 |
+
tags = [tag for tag in decoded.split(", ")]
|
214 |
+
tags = sorted(tags)
|
215 |
+
return ", ".join(tags)
|
216 |
+
|
217 |
+
|
218 |
+
def split_people_tokens_part(token_ids: list[int]):
|
219 |
+
people_tokens = []
|
220 |
+
other_tokens = []
|
221 |
+
|
222 |
+
for token in token_ids:
|
223 |
+
if token in PEOPLE_TAG_IDS_LIST:
|
224 |
+
people_tokens.append(token)
|
225 |
+
else:
|
226 |
+
other_tokens.append(token)
|
227 |
+
|
228 |
+
return people_tokens, other_tokens
|
229 |
+
|
230 |
+
|
231 |
+
def decode_animagine(token_ids: list[int]):
|
232 |
+
def get_part(eos_token_id: int, remains_part: list[int]):
|
233 |
+
part = []
|
234 |
+
for i, token_id in enumerate(remains_part):
|
235 |
+
if token_id == eos_token_id:
|
236 |
+
return part, remains_part[i:]
|
237 |
+
|
238 |
+
part.append(token_id)
|
239 |
+
|
240 |
+
raise Exception("The provided EOS token was not found in the token_ids.")
|
241 |
+
|
242 |
+
# get each part
|
243 |
+
rating_part, remains = get_part(RATING_EOS_ID, token_ids)
|
244 |
+
copyright_part, remains = get_part(COPYRIGHT_EOS_ID, remains)
|
245 |
+
character_part, remains = get_part(CHARACTER_EOS_ID, remains)
|
246 |
+
general_part, _ = get_part(GENERAL_EOS_ID, remains)
|
247 |
+
|
248 |
+
# separete people tags (1girl, 1boy, no humans...)
|
249 |
+
people_part, other_general_part = split_people_tokens_part(general_part)
|
250 |
+
|
251 |
+
# remove "rating:sfw"
|
252 |
+
rating_part = [token for token in rating_part if token != RATING_TAG_IDS["sfw"]]
|
253 |
+
|
254 |
+
# AnimagineXL v3 style order
|
255 |
+
rearranged_tokens = (
|
256 |
+
people_part + character_part + copyright_part + other_general_part + rating_part
|
257 |
+
)
|
258 |
+
rearranged_tokens = [
|
259 |
+
token for token in rearranged_tokens if token not in SPECIAL_TAG_IDS
|
260 |
+
]
|
261 |
+
|
262 |
+
decoded = tokenizer.decode(rearranged_tokens, skip_special_tokens=True)
|
263 |
+
|
264 |
+
# fix "nsfw" tag
|
265 |
+
decoded = decoded.replace("rating:nsfw", "nsfw")
|
266 |
+
|
267 |
+
return decoded
|
268 |
+
|
269 |
+
|
270 |
+
def prepare_rating_tags(rating: str):
|
271 |
+
tag = RATING_TAGS[rating]
|
272 |
+
if tag in [RATING_TAGS["general"], RATING_TAGS["sensitive"]]:
|
273 |
+
parent = RATING_TAGS["sfw"]
|
274 |
+
else:
|
275 |
+
parent = RATING_TAGS["nsfw"]
|
276 |
+
|
277 |
+
return f"{parent}, {tag}"
|
278 |
+
|
279 |
+
|
280 |
+
def handle_inputs(
|
281 |
+
rating_tags: str,
|
282 |
+
copyright_tags_list: list[str],
|
283 |
+
character_tags_list: list[str],
|
284 |
+
general_tags: str,
|
285 |
+
ban_tags: str,
|
286 |
+
do_cfg: bool = False,
|
287 |
+
cfg_scale: float = 1.5,
|
288 |
+
negative_tags: str = "",
|
289 |
+
total_token_length: str = "long",
|
290 |
+
max_new_tokens: int = 128,
|
291 |
+
min_new_tokens: int = 0,
|
292 |
+
temperature: float = 1.0,
|
293 |
+
top_p: float = 1.0,
|
294 |
+
top_k: int = 20,
|
295 |
+
num_beams: int = 1,
|
296 |
+
# model_backend: str = "Default",
|
297 |
+
):
|
298 |
+
"""
|
299 |
+
Returns:
|
300 |
+
[
|
301 |
+
output_tags_natural,
|
302 |
+
output_tags_general_only,
|
303 |
+
output_tags_animagine,
|
304 |
+
input_prompt_raw,
|
305 |
+
output_tags_raw,
|
306 |
+
elapsed_time,
|
307 |
+
output_tags_natural_copy_btn,
|
308 |
+
output_tags_general_only_copy_btn,
|
309 |
+
output_tags_animagine_copy_btn
|
310 |
+
]
|
311 |
+
"""
|
312 |
+
|
313 |
+
start_time = time.time()
|
314 |
+
|
315 |
+
copyright_tags = ", ".join(copyright_tags_list)
|
316 |
+
character_tags = ", ".join(character_tags_list)
|
317 |
+
|
318 |
+
token_length_tag = LENGTH_TAGS[total_token_length]
|
319 |
+
|
320 |
+
prompt: str = tokenizer.apply_chat_template(
|
321 |
+
{ # type: ignore
|
322 |
+
"rating": prepare_rating_tags(rating_tags),
|
323 |
+
"copyright": copyright_tags,
|
324 |
+
"character": character_tags,
|
325 |
+
"general": general_tags,
|
326 |
+
"length": token_length_tag,
|
327 |
+
},
|
328 |
+
tokenize=False,
|
329 |
+
)
|
330 |
+
|
331 |
+
negative_prompt: str = tokenizer.apply_chat_template(
|
332 |
+
{ # type: ignore
|
333 |
+
"rating": prepare_rating_tags(rating_tags),
|
334 |
+
"copyright": "",
|
335 |
+
"character": "",
|
336 |
+
"general": negative_tags,
|
337 |
+
"length": token_length_tag,
|
338 |
+
},
|
339 |
+
tokenize=False,
|
340 |
+
)
|
341 |
+
|
342 |
+
bad_words_ids = tokenizer.encode_plus(
|
343 |
+
ban_tags if negative_tags.strip() == "" else ban_tags + ", " + negative_tags
|
344 |
+
).input_ids
|
345 |
+
|
346 |
+
generated_ids = generate(
|
347 |
+
prompt,
|
348 |
+
model_backend=MODEL_BACKEND,
|
349 |
+
max_new_tokens=max_new_tokens,
|
350 |
+
min_new_tokens=min_new_tokens,
|
351 |
+
do_sample=True,
|
352 |
+
temperature=temperature,
|
353 |
+
top_p=top_p,
|
354 |
+
top_k=top_k,
|
355 |
+
num_beams=num_beams,
|
356 |
+
bad_words_ids=bad_words_ids if len(bad_words_ids) > 0 else None,
|
357 |
+
cfg_scale=cfg_scale,
|
358 |
+
negative_input_text=negative_prompt if do_cfg else None,
|
359 |
+
)
|
360 |
+
|
361 |
+
decoded_normal = decode_normal(generated_ids, skip_special_tokens=True)
|
362 |
+
decoded_general_only = decode_general_only(generated_ids)
|
363 |
+
decoded_animagine = decode_animagine(generated_ids)
|
364 |
+
decoded_raw = decode_normal(generated_ids, skip_special_tokens=False)
|
365 |
+
|
366 |
+
end_time = time.time()
|
367 |
+
elapsed_time = f"Elapsed: {(end_time - start_time) * 1000:.2f} ms"
|
368 |
+
|
369 |
+
# update visibility of buttons
|
370 |
+
set_visible = gr.update(visible=True)
|
371 |
+
|
372 |
+
return [
|
373 |
+
decoded_normal,
|
374 |
+
decoded_general_only,
|
375 |
+
decoded_animagine,
|
376 |
+
prompt,
|
377 |
+
decoded_raw,
|
378 |
+
elapsed_time,
|
379 |
+
set_visible,
|
380 |
+
set_visible,
|
381 |
+
set_visible,
|
382 |
+
]
|
383 |
+
|
384 |
+
|
385 |
+
# ref: https://qiita.com/tregu148/items/fccccbbc47d966dd2fc2
|
386 |
+
def copy_text(_text: None):
|
387 |
+
gr.Info("Copied!")
|
388 |
+
|
389 |
+
|
390 |
+
def get_model_backend():
|
391 |
+
return MODEL_BACKEND
|
392 |
+
|
393 |
+
def get_length_tags():
|
394 |
+
return LENGTH_TAGS
|
395 |
+
|
396 |
+
def get_copyright_tags_list():
|
397 |
+
return COPYRIGHT_TAGS_LIST
|
398 |
+
|
399 |
+
def get_character_tags_list():
|
400 |
+
return CHARACTER_TAGS_LIST
|