HierSpeech_TTS_my / inference_vc.py
Sang-Hoon Lee
Upload 70 files
0164e4a
raw
history blame
9.55 kB
import os
import torch
import argparse
import numpy as np
from scipy.io.wavfile import write
import torchaudio
import utils
from Mels_preprocess import MelSpectrogramFixed
from torch.nn import functional as F
from hierspeechpp_speechsynthesizer import (
SynthesizerTrn, Wav2vec2
)
from ttv_v1.text import text_to_sequence
from ttv_v1.t2w2v_transformer import SynthesizerTrn as Text2W2V
from speechsr24k.speechsr import SynthesizerTrn as SpeechSR24
from speechsr48k.speechsr import SynthesizerTrn as SpeechSR48
from denoiser.generator import MPNet
from denoiser.infer import denoise
import amfm_decompy.basic_tools as basic
import amfm_decompy.pYAAPT as pYAAPT
seed = 1111
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
np.random.seed(seed)
def get_yaapt_f0(audio, rate=16000, interp=False):
frame_length = 20.0
to_pad = int(frame_length / 1000 * rate) // 2
f0s = []
for y in audio.astype(np.float64):
y_pad = np.pad(y.squeeze(), (to_pad, to_pad), "constant", constant_values=0)
signal = basic.SignalObj(y_pad, rate)
pitch = pYAAPT.yaapt(signal, **{'frame_length': frame_length, 'frame_space': 5.0, 'nccf_thresh1': 0.25,
'tda_frame_length': 25.0, 'f0_max':1100})
if interp:
f0s += [pitch.samp_interp[None, None, :]]
else:
f0s += [pitch.samp_values[None, None, :]]
f0 = np.vstack(f0s)
return f0
def load_text(fp):
with open(fp, 'r') as f:
filelist = [line.strip() for line in f.readlines()]
return filelist
def load_checkpoint(filepath, device):
print(filepath)
assert os.path.isfile(filepath)
print("Loading '{}'".format(filepath))
checkpoint_dict = torch.load(filepath, map_location=device)
print("Complete.")
return checkpoint_dict
def get_param_num(model):
num_param = sum(param.numel() for param in model.parameters())
return num_param
def intersperse(lst, item):
result = [item] * (len(lst) * 2 + 1)
result[1::2] = lst
return result
def add_blank_token(text):
text_norm = intersperse(text, 0)
text_norm = torch.LongTensor(text_norm)
return text_norm
def VC(a, hierspeech):
net_g, speechsr, denoiser, mel_fn, w2v = hierspeech
os.makedirs(a.output_dir, exist_ok=True)
source_audio, sample_rate = torchaudio.load(a.source_speech)
if sample_rate != 16000:
source_audio = torchaudio.functional.resample(source_audio, sample_rate, 16000, resampling_method="kaiser_window")
p = (source_audio.shape[-1] // 1280 + 1) * 1280 - source_audio.shape[-1]
source_audio = torch.nn.functional.pad(source_audio, (0, p), mode='constant').data
file_name_s = os.path.splitext(os.path.basename(a.source_speech))[0]
try:
f0 = get_yaapt_f0(source_audio.numpy())
except:
f0 = np.zeros((1, 1, source_audio.shape[-1] // 80))
f0 = f0.astype(np.float32)
f0 = f0.squeeze(0)
ii = f0 != 0
f0[ii] = (f0[ii] - f0[ii].mean()) / f0[ii].std()
y_pad = F.pad(source_audio, (40, 40), "reflect")
x_w2v = w2v(y_pad.cuda())
x_length = torch.LongTensor([x_w2v.size(2)]).to(device)
# Prompt load
target_audio, sample_rate = torchaudio.load(a.target_speech)
# support only single channel
target_audio = target_audio[:1,:]
# Resampling
if sample_rate != 16000:
target_audio = torchaudio.functional.resample(target_audio, sample_rate, 16000, resampling_method="kaiser_window")
if a.scale_norm == 'prompt':
prompt_audio_max = torch.max(target_audio.abs())
try:
t_f0 = get_yaapt_f0(target_audio.numpy())
except:
t_f0 = np.zeros((1, 1, target_audio.shape[-1] // 80))
t_f0 = t_f0.astype(np.float32)
t_f0 = t_f0.squeeze(0)
j = t_f0 != 0
f0[ii] = ((f0[ii] * t_f0[j].std()) + t_f0[j].mean()).clip(min=0)
denorm_f0 = torch.log(torch.FloatTensor(f0+1).cuda())
# We utilize a hop size of 320 but denoiser uses a hop size of 400 so we utilize a hop size of 1600
ori_prompt_len = target_audio.shape[-1]
p = (ori_prompt_len // 1600 + 1) * 1600 - ori_prompt_len
target_audio = torch.nn.functional.pad(target_audio, (0, p), mode='constant').data
file_name_t = os.path.splitext(os.path.basename(a.target_speech))[0]
# If you have a memory issue during denosing the prompt, try to denoise the prompt with cpu before TTS
# We will have a plan to replace a memory-efficient denoiser
if a.denoise_ratio == 0:
target_audio = torch.cat([target_audio.cuda(), target_audio.cuda()], dim=0)
else:
with torch.no_grad():
denoised_audio = denoise(target_audio.squeeze(0).cuda(), denoiser, hps_denoiser)
target_audio = torch.cat([target_audio.cuda(), denoised_audio[:,:target_audio.shape[-1]]], dim=0)
target_audio = target_audio[:,:ori_prompt_len] # 20231108 We found that large size of padding decreases a performance so we remove the paddings after denosing.
trg_mel = mel_fn(target_audio.cuda())
trg_length = torch.LongTensor([trg_mel.size(2)]).to(device)
trg_length2 = torch.cat([trg_length,trg_length], dim=0)
with torch.no_grad():
## Hierarchical Speech Synthesizer (W2V, F0 --> 16k Audio)
converted_audio = \
net_g.voice_conversion_noise_control(x_w2v, x_length, trg_mel, trg_length2, denorm_f0, noise_scale=a.noise_scale_vc, denoise_ratio=a.denoise_ratio)
## SpeechSR (Optional) (16k Audio --> 24k or 48k Audio)
if a.output_sr == 48000 or 24000:
converted_audio = speechsr(converted_audio)
converted_audio = converted_audio.squeeze()
if a.scale_norm == 'prompt':
converted_audio = converted_audio / (torch.abs(converted_audio).max()) * 32767.0 * prompt_audio_max
else:
converted_audio = converted_audio / (torch.abs(converted_audio).max()) * 32767.0 * 0.999
converted_audio = converted_audio.cpu().numpy().astype('int16')
file_name2 = "{}.wav".format(file_name_s+"_to_"+file_name_t)
output_file = os.path.join(a.output_dir, file_name2)
if a.output_sr == 48000:
write(output_file, 48000, converted_audio)
elif a.output_sr == 24000:
write(output_file, 24000, converted_audio)
else:
write(output_file, 16000, converted_audio)
def model_load(a):
mel_fn = MelSpectrogramFixed(
sample_rate=hps.data.sampling_rate,
n_fft=hps.data.filter_length,
win_length=hps.data.win_length,
hop_length=hps.data.hop_length,
f_min=hps.data.mel_fmin,
f_max=hps.data.mel_fmax,
n_mels=hps.data.n_mel_channels,
window_fn=torch.hann_window
).cuda()
w2v = Wav2vec2().cuda()
net_g = SynthesizerTrn(hps.data.filter_length // 2 + 1,
hps.train.segment_size // hps.data.hop_length,
**hps.model).cuda()
net_g.load_state_dict(torch.load(a.ckpt))
_ = net_g.eval()
if a.output_sr == 48000:
speechsr = SpeechSR48(h_sr48.data.n_mel_channels,
h_sr48.train.segment_size // h_sr48.data.hop_length,
**h_sr48.model).cuda()
utils.load_checkpoint(a.ckpt_sr48, speechsr, None)
speechsr.eval()
elif a.output_sr == 24000:
speechsr = SpeechSR24(h_sr.data.n_mel_channels,
h_sr.train.segment_size // h_sr.data.hop_length,
**h_sr.model).cuda()
utils.load_checkpoint(a.ckpt_sr, speechsr, None)
speechsr.eval()
else:
speechsr = None
denoiser = MPNet(hps_denoiser).cuda()
state_dict = load_checkpoint(a.denoiser_ckpt, device)
denoiser.load_state_dict(state_dict['generator'])
denoiser.eval()
return net_g, speechsr, denoiser, mel_fn, w2v
def inference(a):
hierspeech = model_load(a)
VC(a, hierspeech)
def main():
print('Initializing Inference Process..')
parser = argparse.ArgumentParser()
parser.add_argument('--source_speech', default='example/reference_2.wav')
parser.add_argument('--target_speech', default='example/reference_1.wav')
parser.add_argument('--output_dir', default='output')
parser.add_argument('--ckpt', default='./logs/hierspeechpp_eng_kor/hierspeechpp_v2_ckpt.pth')
parser.add_argument('--ckpt_sr', type=str, default='./speechsr24k/G_340000.pth')
parser.add_argument('--ckpt_sr48', type=str, default='./speechsr48k/G_100000.pth')
parser.add_argument('--denoiser_ckpt', type=str, default='denoiser/g_best')
parser.add_argument('--scale_norm', type=str, default='max')
parser.add_argument('--output_sr', type=float, default=48000)
parser.add_argument('--noise_scale_ttv', type=float,
default=0.333)
parser.add_argument('--noise_scale_vc', type=float,
default=0.333)
parser.add_argument('--denoise_ratio', type=float,
default=0.8)
a = parser.parse_args()
global device, hps, h_sr,h_sr48, hps_denoiser
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
hps = utils.get_hparams_from_file(os.path.join(os.path.split(a.ckpt)[0], 'config.json'))
h_sr = utils.get_hparams_from_file(os.path.join(os.path.split(a.ckpt_sr)[0], 'config.json') )
h_sr48 = utils.get_hparams_from_file(os.path.join(os.path.split(a.ckpt_sr48)[0], 'config.json') )
hps_denoiser = utils.get_hparams_from_file(os.path.join(os.path.split(a.denoiser_ckpt)[0], 'config.json'))
inference(a)
if __name__ == '__main__':
main()