KrishGoyani
commited on
Commit
β’
3fe717c
1
Parent(s):
c0fe390
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from langchain.agents.agent_types import AgentType
|
3 |
+
from langchain_experimental.agents.agent_toolkits import create_pandas_dataframe_agent
|
4 |
+
from langchain_google_genai import ChatGoogleGenerativeAI
|
5 |
+
import pandas as pd
|
6 |
+
|
7 |
+
st.set_page_config(
|
8 |
+
page_title="AI Data Explorer",
|
9 |
+
page_icon="π»",
|
10 |
+
)
|
11 |
+
st.header("AI Data Explorer with Gemini API",divider="rainbow")
|
12 |
+
|
13 |
+
|
14 |
+
api_key = st.sidebar.text_input("Enter your Gemini API key", type="password")
|
15 |
+
|
16 |
+
# File uploader for CSV file
|
17 |
+
uploaded_file = st.sidebar.file_uploader("Upload a CSV file", type="csv")
|
18 |
+
|
19 |
+
# Function to create and return an agent
|
20 |
+
def create_agent(api_key, df, llm):
|
21 |
+
|
22 |
+
# Create the pandas agent with the DataFrame and LLM
|
23 |
+
agent = create_pandas_dataframe_agent(
|
24 |
+
llm,
|
25 |
+
df,
|
26 |
+
agent_type=AgentType.ZERO_SHOT_REACT_DESCRIPTION,
|
27 |
+
verbose=True,
|
28 |
+
allow_dangerous_code=True
|
29 |
+
)
|
30 |
+
return agent
|
31 |
+
|
32 |
+
# Application description
|
33 |
+
st.markdown("""
|
34 |
+
## About this Application π€π
|
35 |
+
|
36 |
+
This application allows you to explore and analyze your dataset using an AI-powered agent.
|
37 |
+
You can upload a CSV file and provide your Gemini API key to create an agent capable of answering questions about your data.
|
38 |
+
|
39 |
+
### How to Use π οΈ
|
40 |
+
1. π Enter your Gemini API key in the sidebar.
|
41 |
+
2. π Upload a CSV file containing your dataset.
|
42 |
+
3. β Enter your query about the dataset in the input field provided.
|
43 |
+
4. π The AI agent will process your query and display the results.
|
44 |
+
|
45 |
+
The AI agent leverages the power of a LangChain and large language model (LLM) to understand and analyze your data, providing insights and answers based on your questions.
|
46 |
+
""")
|
47 |
+
|
48 |
+
# Process the uploaded CSV file and create the agent
|
49 |
+
if uploaded_file is not None and api_key:
|
50 |
+
llm = ChatGoogleGenerativeAI(model="gemini-pro",google_api_key=api_key)
|
51 |
+
|
52 |
+
df = pd.read_csv(uploaded_file)
|
53 |
+
st.write("Uploaded CSV file:")
|
54 |
+
st.dataframe(df)
|
55 |
+
|
56 |
+
agent = create_agent(api_key, df, llm)
|
57 |
+
|
58 |
+
# Input field for user query
|
59 |
+
user_query = st.text_input("Enter your query about the dataset")
|
60 |
+
|
61 |
+
# Process the user query and display the result
|
62 |
+
if user_query:
|
63 |
+
with st.spinner('Processing your query...'):
|
64 |
+
try:
|
65 |
+
result = agent.run(user_query)
|
66 |
+
st.success("Query result:")
|
67 |
+
result
|
68 |
+
except Exception as e:
|
69 |
+
st.error(f"Error processing query: {e}")
|
70 |
+
else:
|
71 |
+
st.write("Please enter your Gemini API key and upload a CSV file")
|