Spaces:
Sleeping
Sleeping
import gradio as gr | |
from llama_cpp import Llama | |
llm = Llama(model_path="model.gguf", n_ctx=8000, n_threads=2, chat_format="chatml") | |
def generate(message, history,temperature=0.3,max_tokens=512): | |
system_prompt = "You are ArchBeagle, a superintelligent AI assistantYou must think step by step like a human but in a smarter way. Provide precise and concise answers. Your name is ArchBeagle 7000, you come from the future, and you are a disruptive AI with innovative and creative ideas!" | |
formatted_prompt = [{"role": "system", "content": system_prompt}] | |
for user_prompt, bot_response in history: | |
formatted_prompt.append({"role": "user", "content": user_prompt}) | |
formatted_prompt.append({"role": "assistant", "content": bot_response }) | |
formatted_prompt.append({"role": "user", "content": message}) | |
stream_response = llm.create_chat_completion(messages=formatted_prompt, temperature=temperature, max_tokens=max_tokens, stream=True) | |
response = "" | |
for chunk in stream_response: | |
if len(chunk['choices'][0]["delta"]) != 0 and "content" in chunk['choices'][0]["delta"]: | |
response += chunk['choices'][0]["delta"]["content"] | |
yield response | |
mychatbot = gr.Chatbot( | |
avatar_images=["user.png", "botnb.png"], bubble_full_width=False, show_label=False, show_copy_button=True, likeable=True,) | |
iface = gr.ChatInterface(fn=generate, chatbot=mychatbot, retry_btn=None, undo_btn=None) | |
with gr.Blocks() as demo: | |
gr.HTML("<center><h1>ArchBeagle By Maxime Labonne GGUF Quantized(q_5_k_m) </h1></center>") | |
iface.render() | |
demo.queue().launch(show_api=False, server_name="0.0.0.0") | |