import gradio as gr from PIL import Image import numpy as np from tensorflow.keras.preprocessing import image as keras_image from tensorflow.keras.applications.resnet50 import preprocess_input from tensorflow.keras.models import load_model # Load your trained model model = load_model(r'C:\Daten\Studium Wirtschaftsinformatik\Semester 6 TZ\KI-Anwendungen\Übungen\Übung2\Abschluss\mein_modell.h5') def predict_character(img): img = Image.fromarray(img.astype('uint8'), 'RGB') # Ensure the image is in RGB img = img.resize((224, 224)) # Resize the image to the input size of the model img_array = keras_image.img_to_array(img) # Convert the image to an array img_array = np.expand_dims(img_array, axis=0) # Expand dimensions to match model input img_array = preprocess_input(img_array) # Preprocess the input as expected by ResNet50 prediction = model.predict(img_array) # Predict using the model classes = ['Chopper', 'Nami', 'Ruffy', 'Sanji', 'Usopp', 'Zoro'] # Character names as per your dataset return {classes[i]: float(prediction[0][i]) for i in range(len(classes))} # Return the prediction in a dictionary format # Define Gradio interface interface = gr.Interface( fn=predict_character, inputs=gr.Image(), # Gradio handles resizing automatically based on the model input outputs=gr.Label(num_top_classes=6), # Show top 3 predictions title="One Piece Character Classifier", description="Upload an image of a One Piece character and the classifier will predict which character it is." ) # Launch the interface interface.launch()