Spaces:
Runtime error
Runtime error
import gradio as gr | |
import requests | |
import io | |
from io import BytesIO | |
import os | |
from PIL import Image | |
API_URL = "https://api-inference.huggingface.co/models/Kvikontent/kviimager2.0" | |
api_key = os.environ.get('API_KEY') | |
headers = {"Authorization": f"Bearer {api_key}"} | |
# Define custom Exception class for better error handling | |
class QueryError(Exception): | |
pass | |
def query(payload): | |
try: | |
# Make sure we have valid JSON data before sending the request | |
assert type(payload) == dict | |
# Send the POST request to the API URL | |
response = requests.post(API_URL, headers=headers, json=payload) | |
# Check if the status code indicates success (HTTP Status Code 2xx) | |
if not str(response.status_code).startswith("2"): | |
raise QueryError(f"Query failed! Response status code was '{response.status_code}'") | |
else: | |
# Return the raw bytes from the response object | |
return response.content | |
except AssertionError: | |
print("Invalid Payload Error: Please provide a dictionary.") | |
except RequestException as e: | |
print("Request Failed: ", e) | |
except ConnectionError as ce: | |
print("Connection Error: Unable to connect to the API.", ce) | |
except Timeout as t: | |
print("Timeout Error: Request timed out while trying to reach the API.", t) | |
except TooManyRedirects as tmr: | |
print("Too Many Redirects Error: Exceeded maximum number of redirects.", tmr) | |
except HTTPError as he: | |
print("HTTP Error: Invalid HTTP response.", he) | |
except QueryError as qe: | |
print(qe) | |
except Exception as ex: | |
print("Unknown Error occurred: ", ex) | |
def generate_image_from_prompt(prompt_text): | |
image_bytes = query({"inputs": prompt_text}) | |
img = BytesIO(image_bytes) # Convert to BytesIO stream | |
pil_img = Image.open(img) # Open the image using PIL library | |
return pil_img # Return the converted PIL image | |
title = "KVIImager 2.0 Demo 🎨" | |
description = "This app uses Hugging Face AI model to generate an image based on the provided text prompt 🖼️." | |
input_prompt = gr.Textbox(label="Enter Prompt 📝", placeholder="E.g. 'A peaceful garden with a small cottage'") | |
output_generated_image = gr.Image(label="Generated Image") | |
iface = gr.Interface( | |
fn=generate_image_from_prompt, | |
inputs=input_prompt, | |
outputs=output_generated_image, | |
title=title, | |
description=description | |
) | |
iface.launch() |