GameConfigIdea / leveraging_machine_learning.py
kwabs22
Some changes and flie splitting
a69d738
raw
history blame
12.4 kB
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
import gc
import sys
from diffusers import FluxPipeline
import time
from sentence_transformers import SentenceTransformer
import psutil
import json
import spaces
from threading import Thread
#-----------------
from relatively_constant_variables import knowledge_base
# Initialize the zero tensor on CUDA
zero = torch.Tensor([0]).cuda()
print(zero.device) # This will print 'cpu' outside the @spaces.GPU decorated function
modelnames = ["stvlynn/Gemma-2-2b-Chinese-it", "nbeerbower/mistral-nemo-wissenschaft-12B", "princeton-nlp/gemma-2-9b-it-SimPO", "cognitivecomputations/dolphin-2.9.3-mistral-7B-32k", "01-ai/Yi-Coder-9B-Chat", "ArliAI/Llama-3.1-8B-ArliAI-RPMax-v1.1", "ArliAI/Phi-3.5-mini-3.8B-ArliAI-RPMax-v1.1",
"Qwen/Qwen2.5-7B-Instruct", "Qwen/Qwen2-0.5B-Instruct", "Qwen/Qwen2-1.5B-Instruct", "Qwen/Qwen2-7B-Instruct", "Qwen/Qwen1.5-MoE-A2.7B-Chat", "HuggingFaceTB/SmolLM-135M-Instruct", "microsoft/Phi-3-mini-4k-instruct", "Groq/Llama-3-Groq-8B-Tool-Use", "hugging-quants/Meta-Llama-3.1-8B-Instruct-BNB-NF4",
"SpectraSuite/TriLM_3.9B_Unpacked", "h2oai/h2o-danube3-500m-chat", "OuteAI/Lite-Mistral-150M-v2-Instruct", "Zyphra/Zamba2-1.2B", "anthracite-org/magnum-v2-4b", ]
imagemodelnames = ["black-forest-labs/FLUX.1-schnell"]
current_model_index = 0
current_image_model_index = 0
modelname = modelnames[current_model_index]
imagemodelname = imagemodelnames[current_image_model_index]
lastmodelnameinloadfunction = None
lastimagemodelnameinloadfunction = None
# Load the embedding model
embedding_model = SentenceTransformer('all-MiniLM-L6-v2')
# Initialize model and tokenizer as global variables
model = None
tokenizer = None
flux_pipe = None
# Dictionary to store loaded models
loaded_models = {}
def get_size_str(bytes):
for unit in ['B', 'KB', 'MB', 'GB', 'TB']:
if bytes < 1024:
return f"{bytes:.2f} {unit}"
bytes /= 1024
def load_model(model_name):
global model, tokenizer, lastmodelnameinloadfunction, loaded_models
print(f"Loading model and tokenizer: {model_name}")
# Record initial GPU memory usage
initial_memory = torch.cuda.memory_allocated()
# Clear old model and tokenizer if they exist
if 'model' in globals() and model is not None:
model = None
if 'tokenizer' in globals() and tokenizer is not None:
tokenizer = None
torch.cuda.empty_cache()
gc.collect()
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
model_size = sum(p.numel() * p.element_size() for p in model.parameters())
tokenizer_size = sum(sys.getsizeof(v) for v in tokenizer.__dict__.values())
loaded_models[model_name] = (model, tokenizer)
# Calculate memory usage
final_memory = torch.cuda.memory_allocated()
memory_used = final_memory - initial_memory
loaded_models[model_name] = [str(time.time()), memory_used]
lastmodelnameinloadfunction = (model_name, model_size, tokenizer_size)
print(f"Model and tokenizer {model_name} loaded successfully")
print(f"Model size: {get_size_str(model_size)}")
print(f"Tokenizer size: {get_size_str(tokenizer_size)}")
print(f"GPU memory used: {get_size_str(memory_used)}")
return (f"Model and tokenizer {model_name} loaded successfully. "
f"Model size: {get_size_str(model_size)}, "
f"Tokenizer size: {get_size_str(tokenizer_size)}, "
f"GPU memory used: {get_size_str(memory_used)}")
def load_image_model(imagemodelname):
global flux_pipe, lastimagemodelnameinloadfunction, loaded_models
print(f"Loading image model: {imagemodelname}")
# Record initial GPU memory usage
initial_memory = torch.cuda.memory_allocated()
if 'flux_pipe' in globals() and flux_pipe is not None:
flux_pipe = None
torch.cuda.empty_cache()
gc.collect()
flux_pipe = FluxPipeline.from_pretrained(imagemodelname, torch_dtype=torch.bfloat16)
flux_pipe.enable_model_cpu_offload()
model_size = sum(p.numel() * p.element_size() for p in flux_pipe.transformer.parameters())
#tokenizer_size = 0 # FLUX doesn't use a separate tokenizer
loaded_models[imagemodelname] = flux_pipe
# Calculate memory usage
final_memory = torch.cuda.memory_allocated()
memory_used = final_memory - initial_memory
loaded_models[imagemodelname] = [str(time.time()), memory_used]
lastimagemodelnameinloadfunction = (imagemodelname, model_size) #, tokenizer_size)
print(f"Model and tokenizer {imagemodelname} loaded successfully")
print(f"Model size: {get_size_str(model_size)}")
#print(f"Tokenizer size: {get_size_str(tokenizer_size)}")
print(f"GPU memory used: {get_size_str(memory_used)}")
return (f"Model and tokenizer {imagemodelname} loaded successfully. "
f"Model size: {get_size_str(model_size)}, "
#f"Tokenizer size: {get_size_str(tokenizer_size)}, "
f"GPU memory used: {get_size_str(memory_used)}")
def clear_all_models():
global model, tokenizer, flux_pipe, loaded_models
for model_name, model_obj in loaded_models.items():
if isinstance(model_obj, tuple):
model_obj[0].to('cpu')
del model_obj[0]
del model_obj[1]
else:
model_obj.to('cpu')
del model_obj
model = None
tokenizer = None
flux_pipe = None
loaded_models.clear()
torch.cuda.empty_cache()
gc.collect()
return "All models cleared from memory."
def load_model_list(model_list):
messages = []
for model_name in model_list:
message = load_model(model_name)
messages.append(message)
return "\n".join(messages)
def loaded_model_list():
global loaded_models
return loaded_models
# Initial model load
load_model(modelname)
load_image_model(imagemodelname)
# Create embeddings for the knowledge base
knowledge_base_embeddings = embedding_model.encode([doc["content"] for doc in knowledge_base])
def retrieve(query, k=2):
query_embedding = embedding_model.encode([query])
similarities = torch.nn.functional.cosine_similarity(torch.tensor(query_embedding), torch.tensor(knowledge_base_embeddings))
top_k_indices = similarities.argsort(descending=True)[:k]
return [(knowledge_base[i]["content"], knowledge_base[i]["id"]) for i in top_k_indices]
def get_ram_usage():
ram = psutil.virtual_memory()
return f"RAM Usage: {ram.percent:.2f}%, Available: {ram.available / (1024 ** 3):.2f}GB, Total: {ram.total / (1024 ** 3):.2f}GB"
# Global dictionary to store outputs
output_dict = {}
def empty_output_dict():
global output_dict
output_dict = {}
print("Output dictionary has been emptied.")
def get_model_details(model):
return {
"name": model.config.name_or_path,
"architecture": model.config.architectures[0] if model.config.architectures else "Unknown",
"num_parameters": sum(p.numel() for p in model.parameters()),
}
def get_tokenizer_details(tokenizer):
return {
"name": tokenizer.__class__.__name__,
"vocab_size": tokenizer.vocab_size,
"model_max_length": tokenizer.model_max_length,
}
@spaces.GPU
def generate_response(prompt, use_rag, stream=False):
global output_dict, model, tokenizer
print(zero.device) # This will print 'cuda:0' inside the @spaces.GPU decorated function
torch.cuda.empty_cache()
print(dir(model))
if use_rag:
retrieved_docs = retrieve(prompt)
context = " ".join([doc for doc, _ in retrieved_docs])
doc_ids = [doc_id for _, doc_id in retrieved_docs]
full_prompt = f"Context: {context}\nQuestion: {prompt}\nAnswer:"
else:
full_prompt = prompt
doc_ids = None
messages = [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": full_prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(zero.device)
start_time = time.time()
total_tokens = 0
print(output_dict)
output_key = f"output_{len(output_dict) + 1}"
print(output_key)
output_dict[output_key] = {
"input_prompt": prompt,
"full_prompt": full_prompt,
"use_rag": use_rag,
"generated_text": "",
"tokens_per_second": 0,
"ram_usage": "",
"doc_ids": doc_ids if doc_ids else "N/A",
"model_details": get_model_details(model),
"tokenizer_details": get_tokenizer_details(tokenizer),
"timestamp": time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(start_time))
}
print(output_dict)
if stream:
streamer = TextIteratorStreamer(tokenizer, skip_special_tokens=True)
generation_kwargs = dict(
model_inputs,
streamer=streamer,
max_new_tokens=512,
temperature=0.7,
)
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
for new_text in streamer:
output_dict[output_key]["generated_text"] += new_text
total_tokens += 1
current_time = time.time()
tokens_per_second = total_tokens / (current_time - start_time)
ram_usage = get_ram_usage()
output_dict[output_key]["tokens_per_second"] = f"{tokens_per_second:.2f}"
output_dict[output_key]["ram_usage"] = ram_usage
yield (output_dict[output_key]["generated_text"],
output_dict[output_key]["tokens_per_second"],
output_dict[output_key]["ram_usage"],
output_dict[output_key]["doc_ids"])
else:
generated_ids = model.generate(
model_inputs.input_ids,
max_new_tokens=512
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
total_tokens = len(generated_ids[0])
end_time = time.time()
tokens_per_second = total_tokens / (end_time - start_time)
ram_usage = get_ram_usage()
output_dict[output_key]["generated_text"] = response
output_dict[output_key]["tokens_per_second"] = f"{tokens_per_second:.2f}"
output_dict[output_key]["ram_usage"] = ram_usage
print(output_dict)
yield (output_dict[output_key]["generated_text"],
output_dict[output_key]["tokens_per_second"],
output_dict[output_key]["ram_usage"],
output_dict[output_key]["doc_ids"])
@spaces.GPU
def generate_image(prompt):
global output_dict, flux_pipe
print(dir(flux_pipe))
# Generate image using FLUX
image = flux_pipe(
prompt,
guidance_scale=0.0,
num_inference_steps=4,
max_sequence_length=256,
generator=torch.Generator("cpu").manual_seed(0)
).images[0]
image_path = f"flux_output_{time.time()}.png"
print(image_path)
image.save(image_path)
ram_usage = get_ram_usage()
return image_path, ram_usage, image_path
def get_output_details(output_key):
if output_key in output_dict:
return output_dict[output_key]
else:
return f"No output found for key: {output_key}"
# Update the switch_model function to return the load_model message
def switch_model(choice):
global modelname
modelname = choice
load_message = load_model(modelname)
return load_message, f"Current model: {modelname}"
# Update the model_change_handler function
def model_change_handler(choice):
message, current_model = switch_model(choice)
return message, current_model, message # Use the same message for both outputs
def format_output_dict():
global output_dict
formatted_output = ""
for key, value in output_dict.items():
formatted_output += f"Key: {key}\n"
formatted_output += json.dumps(value, indent=2)
formatted_output += "\n\n"
print(formatted_output)
return formatted_output