# Loading key libraries import streamlit as st import os import pickle import numpy as np import pandas as pd import re from pathlib import Path from PIL import Image import matplotlib.pyplot as plt import seaborn as sns # Setting the page configurations st.set_page_config(page_title= "Prediction Forecasting", layout= "wide", initial_sidebar_state= "auto") # Setting the page title st.title("Grocery Store Forecasting Prediction") # Load the saved data df = pd.read_csv('Grocery.csv') toolkit = "toolkit_folder" @st.cache_resource def load_toolkit(filepath = toolkit): with open(toolkit, "rb") as file: loaded_toolkit = pickle.load(file) return loaded_toolkit toolkit = load_toolkit() Encoder = toolkit["OneHotEncoder"] model = toolkit["model"] # main sections of the app menu = st.sidebar.radio('menu',['Home view','Prediction target']) if menu == 'Home view': st.write('Grocery Store Time Series Forecasting') st.image('images1.jpg',width = 450) st.write('Graphical representation and Data Overview') if st.checkbox('Data Set '): st.table(df.head(15)) st.title('Charts') graph = st.selectbox('Varieties of graphs',['scatter plot','Bar chat','Histogram']) if graph == 'scatter plot': fig,ax = plt.subplots(figsize=(10,5)) sns.scatterplot(y = 'target',x = 'onpromotion',data = df.iloc[:1000],palette = 'bright',hue = 'city'); st.pyplot(fig) if graph == 'Bar chat': fig,ax = plt.subplots(figsize=(10,5)) t = df.groupby("city")["target"].sum().reset_index().sort_values(by="target",ascending=False).iloc[:10] sns.barplot(data=t[:20] , y="target", x="city", palette='Blues_d') st.pyplot(fig) if graph == 'Histogram': fig,ax = plt.subplots(figsize=(10,5)) st.write('Target Categories') sns.distplot(df.target.iloc[:20], kde=True) st.pyplot(fig) if menu == 'Prediction target': st.image('image 2.jpg', width = 460) st.sidebar.markdown('User Input Details and Information') store_id= st.sidebar.selectbox('store_id', options = sorted(list(df['store_id'].unique()))) category_id= st.sidebar.selectbox('categegory_id',options = sorted(list(df['category_id'].unique()))) onpromotion= st.sidebar.number_input('onpromotion', min_value= df["onpromotion"].min(), value= df["onpromotion"].min()) year = st.sidebar.selectbox('year', options = sorted(list(df['year'].unique()))) month = st.sidebar.selectbox('month', options = sorted(list(df['month'].unique()))) dayofmonth= st.sidebar.number_input('dayofmonth', min_value= df["dayofmonth"].min(), value= df["dayofmonth"].min()) dayofweek = st.sidebar.number_input('dayofweek', min_value= df["dayofweek"].min(), value= df["dayofweek"].min()) dayofyear = st.sidebar.number_input('dayofyear', min_value= df["dayofyear"].min(), value= df["dayofyear"].min()) weekofyear = st.sidebar.number_input('weekofyear', min_value= df["weekofyear"].min(), value= df["weekofyear"].min()) quarter = st.sidebar.number_input('quarter', min_value= df["quarter"].min(), value= df["quarter"].min()) is_month_start = st.sidebar.number_input('is_month_start', min_value= df["is_month_start"].min(), value= df["is_month_start"].min()) is_month_end = st.sidebar.number_input('is_month_end', min_value= df["is_month_end"].min(), value= df["is_month_end"].min()) is_quarter_start = st.sidebar.number_input('is_quarter_start', min_value= df["is_quarter_start"].min(), value= df["is_quarter_start"].min()) is_quarter_end = st.sidebar.number_input('is_quarter_end', min_value= df["is_quarter_end"].min(), value= df["is_quarter_end"].min()) is_year_start = st.sidebar.number_input('is_year_start', min_value= df["is_year_start"].min(), value= df["is_year_start"].min()) is_year_end = st.sidebar.number_input('is_year_end', min_value= df["is_year_end"].min(), value= df["is_year_end"].min()) year_weekofyear = st.sidebar.number_input('year_weekofyear', min_value= df["year_weekofyear"].min(), value= df["year_weekofyear"].min()) city = st.sidebar.selectbox("city:", options= sorted(set(df["city"]))) type= st.sidebar.number_input('type', min_value= df["type"].min(), value= df["type"].min()) cluster = st.sidebar.selectbox('cluster', options = sorted(list(df['cluster'].unique()))) input_df = { 'store_id':store_id, 'category_id':category_id, 'onpromotion' :onpromotion, 'year' : year, 'month' :month, 'dayofmonth' :dayofmonth, 'dayofweek' : dayofweek, 'dayofyear' : dayofyear, 'weekofyear' : weekofyear, 'quarter' : quarter, 'is_month_start' : is_month_start, 'is_month_end' : is_month_start, 'is_quarter_start' : is_quarter_start, 'is_quarter_end' : is_quarter_end, 'is_year_start' : is_year_start, 'is_year_end' : is_year_end, 'year_weekofyear' : year_weekofyear, 'city' : city, 'type' : type, 'cluster': cluster } # Put the input dictionary in a dataset input_data = pd.DataFrame(input_df, index = [0]) # defining categories and numeric columns categoric_column = ['city'] columns = list(input_data.columns) encoded_cat = Encoder.transform(input_data[categoric_column]) # we dropped the categorical encoder column before we concat train_enc = input_data.drop(['city'],axis = 1) input_d = pd.concat([train_enc, encoded_cat], axis=1) # convert input_data to a numpy array before flattening to convert it back to a 2D array input_df= input_d.to_numpy() prediction = model.predict(input_df.flatten().reshape(1, -1)) if st.button('Predict'): st.success('The predicted target is ' + str(round(prediction[0],2)))