File size: 15,443 Bytes
98a77e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
import os.path as osp
import cv2
import numpy as np
import scipy.io as sio
import torch
from PIL import Image
from torch.utils.data import Dataset
from types import SimpleNamespace


def get_cub_loader(data_dir, split='test', is_validation=False, batch_size=256, num_workers=4, image_size=256):
    opts = SimpleNamespace()
    opts.data_dir = data_dir
    opts.padding_frac = 0.05
    opts.jitter_frac = 0.05
    opts.input_size = image_size
    opts.split = split

    dataset = CUBDataset(opts)
    loader = torch.utils.data.DataLoader(
        dataset,
        batch_size=batch_size,
        shuffle=not is_validation,
        num_workers=num_workers,
        pin_memory=True
    )
    return loader


def get_cub_loader_ddp(data_dir, world_size, rank, split='test', is_validation=False, batch_size=256, num_workers=4, image_size=256):
    opts = SimpleNamespace()
    opts.data_dir = data_dir
    opts.padding_frac = 0.05
    opts.jitter_frac = 0.05
    opts.input_size = image_size
    opts.split = split

    dataset = CUBDataset(opts)

    sampler = torch.utils.data.distributed.DistributedSampler(
        dataset,
        num_replicas=world_size,
        rank=rank,
    )
    
    loader = torch.utils.data.DataLoader(
        dataset,
        sampler=sampler,
        batch_size=batch_size,
        shuffle=not is_validation,
        drop_last=True,
        num_workers=num_workers,
        pin_memory=True
    )
    return loader


class CUBDataset(Dataset):
    def __init__(self, opts):
        super().__init__()

        self.opts = opts
        self.img_size = opts.input_size
        self.jitter_frac = opts.jitter_frac
        self.padding_frac = opts.padding_frac
        self.split = opts.split
        self.data_dir = opts.data_dir
        self.data_cache_dir = osp.join(self.data_dir, 'cachedir/cub')
        self.img_dir = osp.join(self.data_dir, 'images')

        self.anno_path = osp.join(self.data_cache_dir, 'data', '%s_cub_cleaned.mat' % self.split)
        self.anno_sfm_path = osp.join(self.data_cache_dir, 'sfm', 'anno_%s.mat' % self.split)

        if not osp.exists(self.anno_path):
            print('%s doesnt exist!' % self.anno_path)
            import pdb; pdb.set_trace()

        # Load the annotation file.
        print('loading %s' % self.anno_path)
        self.anno = sio.loadmat(
            self.anno_path, struct_as_record=False, squeeze_me=True)['images']
        self.anno_sfm = sio.loadmat(
            self.anno_sfm_path, struct_as_record=False, squeeze_me=True)['sfm_anno']

        self.kp_perm = np.array([1, 2, 3, 4, 5, 6, 11, 12, 13, 10, 7, 8, 9, 14, 15]) - 1;

        self.num_imgs = len(self.anno)
        print('%d images' % self.num_imgs)

    def forward_img(self, index):
        data = self.anno[index]
        data_sfm = self.anno_sfm[0]

        # sfm_pose = (sfm_c, sfm_t, sfm_r)
        sfm_pose = [np.copy(data_sfm.scale), np.copy(data_sfm.trans), np.copy(data_sfm.rot)]

        sfm_rot = np.pad(sfm_pose[2], (0,1), 'constant')
        sfm_rot[3, 3] = 1
        sfm_pose[2] = quaternion_from_matrix(sfm_rot, isprecise=True)

        img_path = osp.join(self.img_dir, str(data.rel_path))
        #img_path = img_path.replace("JPEG", "jpg")
        img = np.array(Image.open(img_path))

        # Some are grayscale:
        if len(img.shape) == 2:
            img = np.repeat(np.expand_dims(img, 2), 3, axis=2)
        mask = data.mask
        mask = np.expand_dims(mask, 2)
        h,w,_ = mask.shape

        # Adjust to 0 indexing
        bbox = np.array(
            [data.bbox.x1, data.bbox.y1, data.bbox.x2, data.bbox.y2],
            float) - 1

        parts = data.parts.T.astype(float)
        kp = np.copy(parts)
        vis = kp[:, 2] > 0
        kp[vis, :2] -= 1

        # Peturb bbox
        if self.split == 'train':
            bbox = peturb_bbox(
                bbox, pf=self.padding_frac, jf=self.jitter_frac)
        else:
            bbox = peturb_bbox(
                bbox, pf=self.padding_frac, jf=0)
        bbox = square_bbox(bbox)

        # crop image around bbox, translate kps
        img, mask, kp, sfm_pose = self.crop_image(img, mask, bbox, kp, vis, sfm_pose)

        # scale image, and mask. And scale kps.
        img, mask, kp, sfm_pose = self.scale_image(img, mask, kp, vis, sfm_pose)

        # Mirror image on random.
        if self.split == 'train':
            img, mask, kp, sfm_pose = self.mirror_image(img, mask, kp, sfm_pose)

        # Normalize kp to be [-1, 1]
        img_h, img_w = img.shape[:2]
        kp_norm, sfm_pose = self.normalize_kp(kp, sfm_pose, img_h, img_w)

        # img = Image.fromarray(np.asarray(img, np.uint8))
        mask = np.asarray(mask, np.float32)
        return img, kp_norm, mask, sfm_pose, img_path

    def normalize_kp(self, kp, sfm_pose, img_h, img_w):
        vis = kp[:, 2, None] > 0
        new_kp = np.stack([2 * (kp[:, 0] / img_w) - 1,
                           2 * (kp[:, 1] / img_h) - 1,
                           kp[:, 2]]).T
        sfm_pose[0] *= (1.0/img_w + 1.0/img_h)
        sfm_pose[1][0] = 2.0 * (sfm_pose[1][0] / img_w) - 1
        sfm_pose[1][1] = 2.0 * (sfm_pose[1][1] / img_h) - 1
        new_kp = vis * new_kp

        return new_kp, sfm_pose

    def crop_image(self, img, mask, bbox, kp, vis, sfm_pose):
        # crop image and mask and translate kps
        img = crop(img, bbox, bgval=1)
        mask = crop(mask, bbox, bgval=0)
        kp[vis, 0] -= bbox[0]
        kp[vis, 1] -= bbox[1]
        sfm_pose[1][0] -= bbox[0]
        sfm_pose[1][1] -= bbox[1]
        return img, mask, kp, sfm_pose

    def scale_image(self, img, mask, kp, vis, sfm_pose):
        # Scale image so largest bbox size is img_size
        bwidth = np.shape(img)[0]
        bheight = np.shape(img)[1]
        scale = self.img_size / float(max(bwidth, bheight))
        img_scale, _ = resize_img(img, scale)
        # if img_scale.shape[0] != self.img_size:
        #     print('bad!')
        #     import ipdb; ipdb.set_trace()
        # mask_scale, _ = resize_img(mask, scale)
#         mask_scale, _ = resize_img(mask, scale, interpolation=cv2.INTER_NEAREST)
        mask_scale, _ = resize_img(mask, scale)
        kp[vis, :2] *= scale
        sfm_pose[0] *= scale
        sfm_pose[1] *= scale

        return img_scale, mask_scale, kp, sfm_pose

    def mirror_image(self, img, mask, kp, sfm_pose):
        kp_perm = self.kp_perm
        if np.random.rand(1) > 0.5:
            # Need copy bc torch collate doesnt like neg strides
            img_flip = img[:, ::-1, :].copy()
            mask_flip = mask[:, ::-1].copy()

            # Flip kps.
            new_x = img.shape[1] - kp[:, 0] - 1
            kp_flip = np.hstack((new_x[:, None], kp[:, 1:]))
            kp_flip = kp_flip[kp_perm, :]
            # Flip sfm_pose Rot.
            R = quaternion_matrix(sfm_pose[2])
            flip_R = np.diag([-1, 1, 1, 1]).dot(R.dot(np.diag([-1, 1, 1, 1])))
            sfm_pose[2] = quaternion_from_matrix(flip_R, isprecise=True)
            # Flip tx
            tx = img.shape[1] - sfm_pose[1][0] - 1
            sfm_pose[1][0] = tx
            return img_flip, mask_flip, kp_flip, sfm_pose
        else:
            return img, mask, kp, sfm_pose

    def __len__(self):
        return self.num_imgs

    def __getitem__(self, index):
        img, kp, mask, sfm_pose, img_path = self.forward_img(index)
        sfm_pose[0].shape = 1
        mask = np.expand_dims(mask, 2)

        images = torch.FloatTensor(img /255.).permute(2,0,1).unsqueeze(0)
        masks = torch.FloatTensor(mask).permute(2,0,1).repeat(1,3,1,1)
        mask_dt = compute_distance_transform(masks)
        # flows = torch.zeros(1,2, self.img_size, self.img_size)
        flows = torch.zeros(1)
        bboxs = torch.FloatTensor([0, 0, 0, self.img_size, self.img_size, 1, 1, 0]).unsqueeze(0) # frame_id, crop_x0, crop_y0, crop_w, crop_h, resize_sx, resize_sy, sharpness
        bg_image = images[0]
        seq_idx = torch.LongTensor([index])
        frame_idx = torch.LongTensor([0])
        return images, masks, mask_dt, flows, bboxs, bg_image, seq_idx, frame_idx


def compute_distance_transform(mask):
    mask_dt = []
    for m in mask:
        dt = torch.FloatTensor(cv2.distanceTransform(np.uint8(m[0]), cv2.DIST_L2, cv2.DIST_MASK_PRECISE))
        inv_dt = torch.FloatTensor(cv2.distanceTransform(np.uint8(1 - m[0]), cv2.DIST_L2, cv2.DIST_MASK_PRECISE))
        mask_dt += [torch.stack([dt, inv_dt], 0)]
    return torch.stack(mask_dt, 0)  # Bx2xHxW


def resize_img(img, scale_factor):
    new_size = (np.round(np.array(img.shape[:2]) * scale_factor)).astype(int)
    new_img = cv2.resize(img, (new_size[1], new_size[0]))
    # This is scale factor of [height, width] i.e. [y, x]
    actual_factor = [new_size[0] / float(img.shape[0]),
                     new_size[1] / float(img.shape[1])]
    return new_img, actual_factor


def peturb_bbox(bbox, pf=0, jf=0):
    '''
    Jitters and pads the input bbox.
    Args:
        bbox: Zero-indexed tight bbox.
        pf: padding fraction.
        jf: jittering fraction.
    Returns:
        pet_bbox: Jittered and padded box. Might have -ve or out-of-image coordinates
    '''
    pet_bbox = [coord for coord in bbox]
    bwidth = bbox[2] - bbox[0] + 1
    bheight = bbox[3] - bbox[1] + 1

    pet_bbox[0] -= (pf*bwidth) + (1-2*np.random.random())*jf*bwidth
    pet_bbox[1] -= (pf*bheight) + (1-2*np.random.random())*jf*bheight
    pet_bbox[2] += (pf*bwidth) + (1-2*np.random.random())*jf*bwidth
    pet_bbox[3] += (pf*bheight) + (1-2*np.random.random())*jf*bheight

    return pet_bbox


def square_bbox(bbox):
    '''
    Converts a bbox to have a square shape by increasing size along non-max dimension.
    '''
    sq_bbox = [int(round(coord)) for coord in bbox]
    bwidth = sq_bbox[2] - sq_bbox[0] + 1
    bheight = sq_bbox[3] - sq_bbox[1] + 1
    maxdim = float(max(bwidth, bheight))

    dw_b_2 = int(round((maxdim-bwidth)/2.0))
    dh_b_2 = int(round((maxdim-bheight)/2.0))

    sq_bbox[0] -= dw_b_2
    sq_bbox[1] -= dh_b_2
    sq_bbox[2] = sq_bbox[0] + maxdim - 1
    sq_bbox[3] = sq_bbox[1] + maxdim - 1

    return sq_bbox


def crop(img, bbox, bgval=0):
    '''
    Crops a region from the image corresponding to the bbox.
    If some regions specified go outside the image boundaries, the pixel values are set to bgval.
    Args:
        img: image to crop
        bbox: bounding box to crop
        bgval: default background for regions outside image
    '''
    bbox = [int(round(c)) for c in bbox]
    bwidth = bbox[2] - bbox[0] + 1
    bheight = bbox[3] - bbox[1] + 1

    im_shape = np.shape(img)
    im_h, im_w = im_shape[0], im_shape[1]

    nc = 1 if len(im_shape) < 3 else im_shape[2]

    img_out = np.ones((bheight, bwidth, nc))*bgval
    x_min_src = max(0, bbox[0])
    x_max_src = min(im_w, bbox[2]+1)
    y_min_src = max(0, bbox[1])
    y_max_src = min(im_h, bbox[3]+1)

    x_min_trg = x_min_src - bbox[0]
    x_max_trg = x_max_src - x_min_src + x_min_trg
    y_min_trg = y_min_src - bbox[1]
    y_max_trg = y_max_src - y_min_src + y_min_trg

    img_out[y_min_trg:y_max_trg, x_min_trg:x_max_trg, :] = img[y_min_src:y_max_src, x_min_src:x_max_src, :]
    return img_out


# https://github.com/akanazawa/cmr/blob/master/utils/transformations.py
import math
import numpy
_EPS = numpy.finfo(float).eps * 4.0


def quaternion_matrix(quaternion):
    """Return homogeneous rotation matrix from quaternion.
    >>> M = quaternion_matrix([0.99810947, 0.06146124, 0, 0])
    >>> numpy.allclose(M, rotation_matrix(0.123, [1, 0, 0]))
    True
    >>> M = quaternion_matrix([1, 0, 0, 0])
    >>> numpy.allclose(M, numpy.identity(4))
    True
    >>> M = quaternion_matrix([0, 1, 0, 0])
    >>> numpy.allclose(M, numpy.diag([1, -1, -1, 1]))
    True
    """
    q = numpy.array(quaternion, dtype=numpy.float64, copy=True)
    n = numpy.dot(q, q)
    if n < _EPS:
        return numpy.identity(4)
    q *= math.sqrt(2.0 / n)
    q = numpy.outer(q, q)
    return numpy.array([
        [1.0-q[2, 2]-q[3, 3],     q[1, 2]-q[3, 0],     q[1, 3]+q[2, 0], 0.0],
        [    q[1, 2]+q[3, 0], 1.0-q[1, 1]-q[3, 3],     q[2, 3]-q[1, 0], 0.0],
        [    q[1, 3]-q[2, 0],     q[2, 3]+q[1, 0], 1.0-q[1, 1]-q[2, 2], 0.0],
        [                0.0,                 0.0,                 0.0, 1.0]])


def quaternion_from_matrix(matrix, isprecise=False):
    """Return quaternion from rotation matrix.
    If isprecise is True, the input matrix is assumed to be a precise rotation
    matrix and a faster algorithm is used.
    >>> q = quaternion_from_matrix(numpy.identity(4), True)
    >>> numpy.allclose(q, [1, 0, 0, 0])
    True
    >>> q = quaternion_from_matrix(numpy.diag([1, -1, -1, 1]))
    >>> numpy.allclose(q, [0, 1, 0, 0]) or numpy.allclose(q, [0, -1, 0, 0])
    True
    >>> R = rotation_matrix(0.123, (1, 2, 3))
    >>> q = quaternion_from_matrix(R, True)
    >>> numpy.allclose(q, [0.9981095, 0.0164262, 0.0328524, 0.0492786])
    True
    >>> R = [[-0.545, 0.797, 0.260, 0], [0.733, 0.603, -0.313, 0],
    ...      [-0.407, 0.021, -0.913, 0], [0, 0, 0, 1]]
    >>> q = quaternion_from_matrix(R)
    >>> numpy.allclose(q, [0.19069, 0.43736, 0.87485, -0.083611])
    True
    >>> R = [[0.395, 0.362, 0.843, 0], [-0.626, 0.796, -0.056, 0],
    ...      [-0.677, -0.498, 0.529, 0], [0, 0, 0, 1]]
    >>> q = quaternion_from_matrix(R)
    >>> numpy.allclose(q, [0.82336615, -0.13610694, 0.46344705, -0.29792603])
    True
    >>> R = random_rotation_matrix()
    >>> q = quaternion_from_matrix(R)
    >>> is_same_transform(R, quaternion_matrix(q))
    True
    >>> is_same_quaternion(quaternion_from_matrix(R, isprecise=False),
    ...                    quaternion_from_matrix(R, isprecise=True))
    True
    >>> R = euler_matrix(0.0, 0.0, numpy.pi/2.0)
    >>> is_same_quaternion(quaternion_from_matrix(R, isprecise=False),
    ...                    quaternion_from_matrix(R, isprecise=True))
    True
    """
    M = numpy.array(matrix, dtype=numpy.float64, copy=False)[:4, :4]
    if isprecise:
        q = numpy.empty((4, ))
        t = numpy.trace(M)
        if t > M[3, 3]:
            q[0] = t
            q[3] = M[1, 0] - M[0, 1]
            q[2] = M[0, 2] - M[2, 0]
            q[1] = M[2, 1] - M[1, 2]
        else:
            i, j, k = 0, 1, 2
            if M[1, 1] > M[0, 0]:
                i, j, k = 1, 2, 0
            if M[2, 2] > M[i, i]:
                i, j, k = 2, 0, 1
            t = M[i, i] - (M[j, j] + M[k, k]) + M[3, 3]
            q[i] = t
            q[j] = M[i, j] + M[j, i]
            q[k] = M[k, i] + M[i, k]
            q[3] = M[k, j] - M[j, k]
            q = q[[3, 0, 1, 2]]
        q *= 0.5 / math.sqrt(t * M[3, 3])
    else:
        m00 = M[0, 0]
        m01 = M[0, 1]
        m02 = M[0, 2]
        m10 = M[1, 0]
        m11 = M[1, 1]
        m12 = M[1, 2]
        m20 = M[2, 0]
        m21 = M[2, 1]
        m22 = M[2, 2]
        # symmetric matrix K
        K = numpy.array([[m00-m11-m22, 0.0,         0.0,         0.0],
                         [m01+m10,     m11-m00-m22, 0.0,         0.0],
                         [m02+m20,     m12+m21,     m22-m00-m11, 0.0],
                         [m21-m12,     m02-m20,     m10-m01,     m00+m11+m22]])
        K /= 3.0
        # quaternion is eigenvector of K that corresponds to largest eigenvalue
        w, V = numpy.linalg.eigh(K)
        q = V[[3, 0, 1, 2], numpy.argmax(w)]
    if q[0] < 0.0:
        numpy.negative(q, q)
    return q