Spaces:
Sleeping
Sleeping
File size: 15,443 Bytes
98a77e0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 |
import os.path as osp
import cv2
import numpy as np
import scipy.io as sio
import torch
from PIL import Image
from torch.utils.data import Dataset
from types import SimpleNamespace
def get_cub_loader(data_dir, split='test', is_validation=False, batch_size=256, num_workers=4, image_size=256):
opts = SimpleNamespace()
opts.data_dir = data_dir
opts.padding_frac = 0.05
opts.jitter_frac = 0.05
opts.input_size = image_size
opts.split = split
dataset = CUBDataset(opts)
loader = torch.utils.data.DataLoader(
dataset,
batch_size=batch_size,
shuffle=not is_validation,
num_workers=num_workers,
pin_memory=True
)
return loader
def get_cub_loader_ddp(data_dir, world_size, rank, split='test', is_validation=False, batch_size=256, num_workers=4, image_size=256):
opts = SimpleNamespace()
opts.data_dir = data_dir
opts.padding_frac = 0.05
opts.jitter_frac = 0.05
opts.input_size = image_size
opts.split = split
dataset = CUBDataset(opts)
sampler = torch.utils.data.distributed.DistributedSampler(
dataset,
num_replicas=world_size,
rank=rank,
)
loader = torch.utils.data.DataLoader(
dataset,
sampler=sampler,
batch_size=batch_size,
shuffle=not is_validation,
drop_last=True,
num_workers=num_workers,
pin_memory=True
)
return loader
class CUBDataset(Dataset):
def __init__(self, opts):
super().__init__()
self.opts = opts
self.img_size = opts.input_size
self.jitter_frac = opts.jitter_frac
self.padding_frac = opts.padding_frac
self.split = opts.split
self.data_dir = opts.data_dir
self.data_cache_dir = osp.join(self.data_dir, 'cachedir/cub')
self.img_dir = osp.join(self.data_dir, 'images')
self.anno_path = osp.join(self.data_cache_dir, 'data', '%s_cub_cleaned.mat' % self.split)
self.anno_sfm_path = osp.join(self.data_cache_dir, 'sfm', 'anno_%s.mat' % self.split)
if not osp.exists(self.anno_path):
print('%s doesnt exist!' % self.anno_path)
import pdb; pdb.set_trace()
# Load the annotation file.
print('loading %s' % self.anno_path)
self.anno = sio.loadmat(
self.anno_path, struct_as_record=False, squeeze_me=True)['images']
self.anno_sfm = sio.loadmat(
self.anno_sfm_path, struct_as_record=False, squeeze_me=True)['sfm_anno']
self.kp_perm = np.array([1, 2, 3, 4, 5, 6, 11, 12, 13, 10, 7, 8, 9, 14, 15]) - 1;
self.num_imgs = len(self.anno)
print('%d images' % self.num_imgs)
def forward_img(self, index):
data = self.anno[index]
data_sfm = self.anno_sfm[0]
# sfm_pose = (sfm_c, sfm_t, sfm_r)
sfm_pose = [np.copy(data_sfm.scale), np.copy(data_sfm.trans), np.copy(data_sfm.rot)]
sfm_rot = np.pad(sfm_pose[2], (0,1), 'constant')
sfm_rot[3, 3] = 1
sfm_pose[2] = quaternion_from_matrix(sfm_rot, isprecise=True)
img_path = osp.join(self.img_dir, str(data.rel_path))
#img_path = img_path.replace("JPEG", "jpg")
img = np.array(Image.open(img_path))
# Some are grayscale:
if len(img.shape) == 2:
img = np.repeat(np.expand_dims(img, 2), 3, axis=2)
mask = data.mask
mask = np.expand_dims(mask, 2)
h,w,_ = mask.shape
# Adjust to 0 indexing
bbox = np.array(
[data.bbox.x1, data.bbox.y1, data.bbox.x2, data.bbox.y2],
float) - 1
parts = data.parts.T.astype(float)
kp = np.copy(parts)
vis = kp[:, 2] > 0
kp[vis, :2] -= 1
# Peturb bbox
if self.split == 'train':
bbox = peturb_bbox(
bbox, pf=self.padding_frac, jf=self.jitter_frac)
else:
bbox = peturb_bbox(
bbox, pf=self.padding_frac, jf=0)
bbox = square_bbox(bbox)
# crop image around bbox, translate kps
img, mask, kp, sfm_pose = self.crop_image(img, mask, bbox, kp, vis, sfm_pose)
# scale image, and mask. And scale kps.
img, mask, kp, sfm_pose = self.scale_image(img, mask, kp, vis, sfm_pose)
# Mirror image on random.
if self.split == 'train':
img, mask, kp, sfm_pose = self.mirror_image(img, mask, kp, sfm_pose)
# Normalize kp to be [-1, 1]
img_h, img_w = img.shape[:2]
kp_norm, sfm_pose = self.normalize_kp(kp, sfm_pose, img_h, img_w)
# img = Image.fromarray(np.asarray(img, np.uint8))
mask = np.asarray(mask, np.float32)
return img, kp_norm, mask, sfm_pose, img_path
def normalize_kp(self, kp, sfm_pose, img_h, img_w):
vis = kp[:, 2, None] > 0
new_kp = np.stack([2 * (kp[:, 0] / img_w) - 1,
2 * (kp[:, 1] / img_h) - 1,
kp[:, 2]]).T
sfm_pose[0] *= (1.0/img_w + 1.0/img_h)
sfm_pose[1][0] = 2.0 * (sfm_pose[1][0] / img_w) - 1
sfm_pose[1][1] = 2.0 * (sfm_pose[1][1] / img_h) - 1
new_kp = vis * new_kp
return new_kp, sfm_pose
def crop_image(self, img, mask, bbox, kp, vis, sfm_pose):
# crop image and mask and translate kps
img = crop(img, bbox, bgval=1)
mask = crop(mask, bbox, bgval=0)
kp[vis, 0] -= bbox[0]
kp[vis, 1] -= bbox[1]
sfm_pose[1][0] -= bbox[0]
sfm_pose[1][1] -= bbox[1]
return img, mask, kp, sfm_pose
def scale_image(self, img, mask, kp, vis, sfm_pose):
# Scale image so largest bbox size is img_size
bwidth = np.shape(img)[0]
bheight = np.shape(img)[1]
scale = self.img_size / float(max(bwidth, bheight))
img_scale, _ = resize_img(img, scale)
# if img_scale.shape[0] != self.img_size:
# print('bad!')
# import ipdb; ipdb.set_trace()
# mask_scale, _ = resize_img(mask, scale)
# mask_scale, _ = resize_img(mask, scale, interpolation=cv2.INTER_NEAREST)
mask_scale, _ = resize_img(mask, scale)
kp[vis, :2] *= scale
sfm_pose[0] *= scale
sfm_pose[1] *= scale
return img_scale, mask_scale, kp, sfm_pose
def mirror_image(self, img, mask, kp, sfm_pose):
kp_perm = self.kp_perm
if np.random.rand(1) > 0.5:
# Need copy bc torch collate doesnt like neg strides
img_flip = img[:, ::-1, :].copy()
mask_flip = mask[:, ::-1].copy()
# Flip kps.
new_x = img.shape[1] - kp[:, 0] - 1
kp_flip = np.hstack((new_x[:, None], kp[:, 1:]))
kp_flip = kp_flip[kp_perm, :]
# Flip sfm_pose Rot.
R = quaternion_matrix(sfm_pose[2])
flip_R = np.diag([-1, 1, 1, 1]).dot(R.dot(np.diag([-1, 1, 1, 1])))
sfm_pose[2] = quaternion_from_matrix(flip_R, isprecise=True)
# Flip tx
tx = img.shape[1] - sfm_pose[1][0] - 1
sfm_pose[1][0] = tx
return img_flip, mask_flip, kp_flip, sfm_pose
else:
return img, mask, kp, sfm_pose
def __len__(self):
return self.num_imgs
def __getitem__(self, index):
img, kp, mask, sfm_pose, img_path = self.forward_img(index)
sfm_pose[0].shape = 1
mask = np.expand_dims(mask, 2)
images = torch.FloatTensor(img /255.).permute(2,0,1).unsqueeze(0)
masks = torch.FloatTensor(mask).permute(2,0,1).repeat(1,3,1,1)
mask_dt = compute_distance_transform(masks)
# flows = torch.zeros(1,2, self.img_size, self.img_size)
flows = torch.zeros(1)
bboxs = torch.FloatTensor([0, 0, 0, self.img_size, self.img_size, 1, 1, 0]).unsqueeze(0) # frame_id, crop_x0, crop_y0, crop_w, crop_h, resize_sx, resize_sy, sharpness
bg_image = images[0]
seq_idx = torch.LongTensor([index])
frame_idx = torch.LongTensor([0])
return images, masks, mask_dt, flows, bboxs, bg_image, seq_idx, frame_idx
def compute_distance_transform(mask):
mask_dt = []
for m in mask:
dt = torch.FloatTensor(cv2.distanceTransform(np.uint8(m[0]), cv2.DIST_L2, cv2.DIST_MASK_PRECISE))
inv_dt = torch.FloatTensor(cv2.distanceTransform(np.uint8(1 - m[0]), cv2.DIST_L2, cv2.DIST_MASK_PRECISE))
mask_dt += [torch.stack([dt, inv_dt], 0)]
return torch.stack(mask_dt, 0) # Bx2xHxW
def resize_img(img, scale_factor):
new_size = (np.round(np.array(img.shape[:2]) * scale_factor)).astype(int)
new_img = cv2.resize(img, (new_size[1], new_size[0]))
# This is scale factor of [height, width] i.e. [y, x]
actual_factor = [new_size[0] / float(img.shape[0]),
new_size[1] / float(img.shape[1])]
return new_img, actual_factor
def peturb_bbox(bbox, pf=0, jf=0):
'''
Jitters and pads the input bbox.
Args:
bbox: Zero-indexed tight bbox.
pf: padding fraction.
jf: jittering fraction.
Returns:
pet_bbox: Jittered and padded box. Might have -ve or out-of-image coordinates
'''
pet_bbox = [coord for coord in bbox]
bwidth = bbox[2] - bbox[0] + 1
bheight = bbox[3] - bbox[1] + 1
pet_bbox[0] -= (pf*bwidth) + (1-2*np.random.random())*jf*bwidth
pet_bbox[1] -= (pf*bheight) + (1-2*np.random.random())*jf*bheight
pet_bbox[2] += (pf*bwidth) + (1-2*np.random.random())*jf*bwidth
pet_bbox[3] += (pf*bheight) + (1-2*np.random.random())*jf*bheight
return pet_bbox
def square_bbox(bbox):
'''
Converts a bbox to have a square shape by increasing size along non-max dimension.
'''
sq_bbox = [int(round(coord)) for coord in bbox]
bwidth = sq_bbox[2] - sq_bbox[0] + 1
bheight = sq_bbox[3] - sq_bbox[1] + 1
maxdim = float(max(bwidth, bheight))
dw_b_2 = int(round((maxdim-bwidth)/2.0))
dh_b_2 = int(round((maxdim-bheight)/2.0))
sq_bbox[0] -= dw_b_2
sq_bbox[1] -= dh_b_2
sq_bbox[2] = sq_bbox[0] + maxdim - 1
sq_bbox[3] = sq_bbox[1] + maxdim - 1
return sq_bbox
def crop(img, bbox, bgval=0):
'''
Crops a region from the image corresponding to the bbox.
If some regions specified go outside the image boundaries, the pixel values are set to bgval.
Args:
img: image to crop
bbox: bounding box to crop
bgval: default background for regions outside image
'''
bbox = [int(round(c)) for c in bbox]
bwidth = bbox[2] - bbox[0] + 1
bheight = bbox[3] - bbox[1] + 1
im_shape = np.shape(img)
im_h, im_w = im_shape[0], im_shape[1]
nc = 1 if len(im_shape) < 3 else im_shape[2]
img_out = np.ones((bheight, bwidth, nc))*bgval
x_min_src = max(0, bbox[0])
x_max_src = min(im_w, bbox[2]+1)
y_min_src = max(0, bbox[1])
y_max_src = min(im_h, bbox[3]+1)
x_min_trg = x_min_src - bbox[0]
x_max_trg = x_max_src - x_min_src + x_min_trg
y_min_trg = y_min_src - bbox[1]
y_max_trg = y_max_src - y_min_src + y_min_trg
img_out[y_min_trg:y_max_trg, x_min_trg:x_max_trg, :] = img[y_min_src:y_max_src, x_min_src:x_max_src, :]
return img_out
# https://github.com/akanazawa/cmr/blob/master/utils/transformations.py
import math
import numpy
_EPS = numpy.finfo(float).eps * 4.0
def quaternion_matrix(quaternion):
"""Return homogeneous rotation matrix from quaternion.
>>> M = quaternion_matrix([0.99810947, 0.06146124, 0, 0])
>>> numpy.allclose(M, rotation_matrix(0.123, [1, 0, 0]))
True
>>> M = quaternion_matrix([1, 0, 0, 0])
>>> numpy.allclose(M, numpy.identity(4))
True
>>> M = quaternion_matrix([0, 1, 0, 0])
>>> numpy.allclose(M, numpy.diag([1, -1, -1, 1]))
True
"""
q = numpy.array(quaternion, dtype=numpy.float64, copy=True)
n = numpy.dot(q, q)
if n < _EPS:
return numpy.identity(4)
q *= math.sqrt(2.0 / n)
q = numpy.outer(q, q)
return numpy.array([
[1.0-q[2, 2]-q[3, 3], q[1, 2]-q[3, 0], q[1, 3]+q[2, 0], 0.0],
[ q[1, 2]+q[3, 0], 1.0-q[1, 1]-q[3, 3], q[2, 3]-q[1, 0], 0.0],
[ q[1, 3]-q[2, 0], q[2, 3]+q[1, 0], 1.0-q[1, 1]-q[2, 2], 0.0],
[ 0.0, 0.0, 0.0, 1.0]])
def quaternion_from_matrix(matrix, isprecise=False):
"""Return quaternion from rotation matrix.
If isprecise is True, the input matrix is assumed to be a precise rotation
matrix and a faster algorithm is used.
>>> q = quaternion_from_matrix(numpy.identity(4), True)
>>> numpy.allclose(q, [1, 0, 0, 0])
True
>>> q = quaternion_from_matrix(numpy.diag([1, -1, -1, 1]))
>>> numpy.allclose(q, [0, 1, 0, 0]) or numpy.allclose(q, [0, -1, 0, 0])
True
>>> R = rotation_matrix(0.123, (1, 2, 3))
>>> q = quaternion_from_matrix(R, True)
>>> numpy.allclose(q, [0.9981095, 0.0164262, 0.0328524, 0.0492786])
True
>>> R = [[-0.545, 0.797, 0.260, 0], [0.733, 0.603, -0.313, 0],
... [-0.407, 0.021, -0.913, 0], [0, 0, 0, 1]]
>>> q = quaternion_from_matrix(R)
>>> numpy.allclose(q, [0.19069, 0.43736, 0.87485, -0.083611])
True
>>> R = [[0.395, 0.362, 0.843, 0], [-0.626, 0.796, -0.056, 0],
... [-0.677, -0.498, 0.529, 0], [0, 0, 0, 1]]
>>> q = quaternion_from_matrix(R)
>>> numpy.allclose(q, [0.82336615, -0.13610694, 0.46344705, -0.29792603])
True
>>> R = random_rotation_matrix()
>>> q = quaternion_from_matrix(R)
>>> is_same_transform(R, quaternion_matrix(q))
True
>>> is_same_quaternion(quaternion_from_matrix(R, isprecise=False),
... quaternion_from_matrix(R, isprecise=True))
True
>>> R = euler_matrix(0.0, 0.0, numpy.pi/2.0)
>>> is_same_quaternion(quaternion_from_matrix(R, isprecise=False),
... quaternion_from_matrix(R, isprecise=True))
True
"""
M = numpy.array(matrix, dtype=numpy.float64, copy=False)[:4, :4]
if isprecise:
q = numpy.empty((4, ))
t = numpy.trace(M)
if t > M[3, 3]:
q[0] = t
q[3] = M[1, 0] - M[0, 1]
q[2] = M[0, 2] - M[2, 0]
q[1] = M[2, 1] - M[1, 2]
else:
i, j, k = 0, 1, 2
if M[1, 1] > M[0, 0]:
i, j, k = 1, 2, 0
if M[2, 2] > M[i, i]:
i, j, k = 2, 0, 1
t = M[i, i] - (M[j, j] + M[k, k]) + M[3, 3]
q[i] = t
q[j] = M[i, j] + M[j, i]
q[k] = M[k, i] + M[i, k]
q[3] = M[k, j] - M[j, k]
q = q[[3, 0, 1, 2]]
q *= 0.5 / math.sqrt(t * M[3, 3])
else:
m00 = M[0, 0]
m01 = M[0, 1]
m02 = M[0, 2]
m10 = M[1, 0]
m11 = M[1, 1]
m12 = M[1, 2]
m20 = M[2, 0]
m21 = M[2, 1]
m22 = M[2, 2]
# symmetric matrix K
K = numpy.array([[m00-m11-m22, 0.0, 0.0, 0.0],
[m01+m10, m11-m00-m22, 0.0, 0.0],
[m02+m20, m12+m21, m22-m00-m11, 0.0],
[m21-m12, m02-m20, m10-m01, m00+m11+m22]])
K /= 3.0
# quaternion is eigenvector of K that corresponds to largest eigenvalue
w, V = numpy.linalg.eigh(K)
q = V[[3, 0, 1, 2], numpy.argmax(w)]
if q[0] < 0.0:
numpy.negative(q, q)
return q
|