Spaces:
Sleeping
Sleeping
File size: 28,252 Bytes
3bf37d0 faa1e2c 03670ae e858b25 03670ae 3bf37d0 d7c4a03 3bf37d0 d7c4a03 3bf37d0 166562d 4496e29 3bf37d0 f09d510 3bf37d0 4496e29 3bf37d0 f09d510 39c1a63 f09d510 4496e29 f09d510 3bf37d0 f09d510 3bf37d0 f09d510 3bf37d0 66abaaa 3bf37d0 166562d f09d510 3bf37d0 f09d510 3bf37d0 d7c4a03 3bf37d0 f09d510 3bf37d0 0399b2e 3bf37d0 0399b2e f09d510 0399b2e 3bf37d0 f09d510 3bf37d0 f09d510 d7c4a03 3bf37d0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 |
import os
import fire
import gradio as gr
from PIL import Image
from functools import partial
import argparse
import sys
import torch
if os.getenv('SYSTEM') == 'spaces':
os.system('pip install --global-option="--no-networks" git+https://github.com/NVlabs/tiny-cuda-nn/#subdirectory=bindings/torch')
# os.system('pip install fvcore iopath')
# os.system('pip install "git+https://github.com/facebookresearch/pytorch3d.git"')
import cv2
import time
import numpy as np
import trimesh
from segment_anything import build_sam, SamPredictor
import random
from pytorch3d import transforms
import torchvision
import torch.distributed as dist
import nvdiffrast.torch as dr
from video3d.model_ddp import Unsup3DDDP, forward_to_matrix
from video3d.trainer_few_shot import Fewshot_Trainer
from video3d.trainer_ddp import TrainerDDP
from video3d import setup_runtime
from video3d.render.mesh import make_mesh
from video3d.utils.skinning_v4 import estimate_bones, skinning, euler_angles_to_matrix
from video3d.utils.misc import save_obj
from video3d.render import util
import matplotlib.pyplot as plt
from pytorch3d import utils, renderer, transforms, structures, io
from video3d.render.render import render_mesh
from video3d.render.material import texture as material_texture
_TITLE = '''Learning the 3D Fauna of the Web'''
_DESCRIPTION = '''
<div>
Reconstruct any quadruped animal from one image.
</div>
<div>
The demo only contains the 3D reconstruction part.
</div>
'''
_GPU_ID = 0
if not hasattr(Image, 'Resampling'):
Image.Resampling = Image
def sam_init():
sam_checkpoint = os.path.join(os.path.dirname(__file__), "sam_pt", "sam_vit_h_4b8939.pth")
model_type = "vit_h"
# sam = sam_model_registry[model_type](checkpoint=sam_checkpoint).to(device=f"cuda:{_GPU_ID}")
# predictor = SamPredictor(sam)
predictor = SamPredictor(build_sam(checkpoint=sam_checkpoint).to("cuda"))
return predictor
def sam_segment(predictor, input_image, *bbox_coords):
bbox = np.array(bbox_coords)
image = np.asarray(input_image)
start_time = time.time()
predictor.set_image(image)
masks_bbox, scores_bbox, logits_bbox = predictor.predict(
box=bbox,
multimask_output=True
)
print(f"SAM Time: {time.time() - start_time:.3f}s")
out_image = np.zeros((image.shape[0], image.shape[1], 4), dtype=np.uint8)
out_image[:, :, :3] = image
out_image_bbox = out_image.copy()
out_image_bbox[:, :, 3] = masks_bbox[-1].astype(np.uint8) * 255
torch.cuda.empty_cache()
# return Image.fromarray(out_image_bbox, mode='RGB')
x_nonzero = np.nonzero(masks_bbox[-1].astype(np.uint8).sum(axis=0))
y_nonzero = np.nonzero(masks_bbox[-1].astype(np.uint8).sum(axis=1))
x_min = int(x_nonzero[0].min())
y_min = int(y_nonzero[0].min())
x_max = int(x_nonzero[0].max())
y_max = int(y_nonzero[0].max())
out_image_bbox = out_image_bbox[y_min:y_max, x_min:x_max]
out_image_valid = np.concatenate([
out_image_bbox[:, :, :3],
np.ones_like(out_image_bbox[:, :, 3:]) * 255
], axis=-1)
return Image.fromarray(out_image_valid, mode='RGBA')
def expand2square(pil_img, background_color):
width, height = pil_img.size
if width == height:
return pil_img
elif width > height:
result = Image.new(pil_img.mode, (width, width), background_color)
result.paste(pil_img, (0, (width - height) // 2))
return result
else:
result = Image.new(pil_img.mode, (height, height), background_color)
result.paste(pil_img, ((height - width) // 2, 0))
return result
def preprocess(predictor, input_image, chk_group=None, segment=False):
RES = 1024
input_image.thumbnail([RES, RES], Image.Resampling.LANCZOS)
if chk_group is not None:
segment = "Use SAM to center animal" in chk_group
if segment:
image_rem = input_image.convert('RGB')
arr = np.asarray(image_rem)[:,:,-1]
x_nonzero = np.nonzero(arr.sum(axis=0))
y_nonzero = np.nonzero(arr.sum(axis=1))
x_min = int(x_nonzero[0].min())
y_min = int(y_nonzero[0].min())
x_max = int(x_nonzero[0].max())
y_max = int(y_nonzero[0].max())
input_image = sam_segment(predictor, input_image.convert('RGB'), x_min, y_min, x_max, y_max)
input_image = expand2square(input_image, (0, 0, 0, 255))
return input_image, input_image.resize((256, 256), Image.Resampling.LANCZOS)
def save_images(images, mask_pred, mode="transparent"):
img = images[0]
mask = mask_pred[0]
img = img.clamp(0, 1)
if mask is not None:
mask = mask.clamp(0, 1)
if mode == "white":
img = img * mask + 1 * (1 - mask)
elif mode == "black":
img = img * mask + 0 * (1 - mask)
else:
img = torch.cat([img, mask[0:1]], 0)
img = img.permute(1, 2, 0).cpu().numpy()
img = Image.fromarray(np.uint8(img * 255))
return img
def get_bank_embedding(rgb, memory_bank_keys, memory_bank, model, memory_bank_topk=10, memory_bank_dim=128):
images = rgb
batch_size, num_frames, _, h0, w0 = images.shape
images = images.reshape(batch_size*num_frames, *images.shape[2:]) # 0~1
images_in = images * 2 - 1 # rescale to (-1, 1) for DINO
x = images_in
with torch.no_grad():
b, c, h, w = x.shape
model.netInstance.netEncoder._feats = []
model.netInstance.netEncoder._register_hooks([11], 'key')
#self._register_hooks([11], 'token')
x = model.netInstance.netEncoder.ViT.prepare_tokens(x)
#x = self.ViT.prepare_tokens_with_masks(x)
for blk in model.netInstance.netEncoder.ViT.blocks:
x = blk(x)
out = model.netInstance.netEncoder.ViT.norm(x)
model.netInstance.netEncoder._unregister_hooks()
ph, pw = h // model.netInstance.netEncoder.patch_size, w // model.netInstance.netEncoder.patch_size
patch_out = out[:, 1:] # first is class token
patch_out = patch_out.reshape(b, ph, pw, model.netInstance.netEncoder.vit_feat_dim).permute(0, 3, 1, 2)
patch_key = model.netInstance.netEncoder._feats[0][:,:,1:] # B, num_heads, num_patches, dim
patch_key = patch_key.permute(0, 1, 3, 2).reshape(b, model.netInstance.netEncoder.vit_feat_dim, ph, pw)
global_feat = out[:, 0]
batch_features = global_feat
batch_size = batch_features.shape[0]
query = torch.nn.functional.normalize(batch_features.unsqueeze(1), dim=-1) # [B, 1, d_k]
key = torch.nn.functional.normalize(memory_bank_keys, dim=-1) # [size, d_k]
key = key.transpose(1, 0).unsqueeze(0).repeat(batch_size, 1, 1).to(query.device) # [B, d_k, size]
cos_dist = torch.bmm(query, key).squeeze(1) # [B, size], larger the more similar
rank_idx = torch.sort(cos_dist, dim=-1, descending=True)[1][:, :memory_bank_topk] # [B, k]
value = memory_bank.unsqueeze(0).repeat(batch_size, 1, 1).to(query.device) # [B, size, d_v]
out = torch.gather(value, dim=1, index=rank_idx[..., None].repeat(1, 1, memory_bank_dim)) # [B, k, d_v]
weights = torch.gather(cos_dist, dim=-1, index=rank_idx) # [B, k]
weights = torch.nn.functional.normalize(weights, p=1.0, dim=-1).unsqueeze(-1).repeat(1, 1, memory_bank_dim) # [B, k, d_v] weights have been normalized
out = weights * out
out = torch.sum(out, dim=1)
batch_mean_out = torch.mean(out, dim=0)
weight_aux = {
'weights': weights[:, :, 0], # [B, k], weights from large to small
'pick_idx': rank_idx, # [B, k]
}
batch_embedding = batch_mean_out
embeddings = out
weights = weight_aux
bank_embedding_model_input = [batch_embedding, embeddings, weights]
return bank_embedding_model_input
class FixedDirectionLight(torch.nn.Module):
def __init__(self, direction, amb, diff):
super(FixedDirectionLight, self).__init__()
self.light_dir = direction
self.amb = amb
self.diff = diff
self.is_hacking = not (isinstance(self.amb, float)
or isinstance(self.amb, int))
def forward(self, feat):
batch_size = feat.shape[0]
if self.is_hacking:
return torch.concat([self.light_dir, self.amb, self.diff], -1)
else:
return torch.concat([self.light_dir, torch.FloatTensor([self.amb, self.diff]).to(self.light_dir.device)], -1).expand(batch_size, -1)
def shade(self, feat, kd, normal):
light_params = self.forward(feat)
light_dir = light_params[..., :3][:, None, None, :]
int_amb = light_params[..., 3:4][:, None, None, :]
int_diff = light_params[..., 4:5][:, None, None, :]
shading = (int_amb + int_diff *
torch.clamp(util.dot(light_dir, normal), min=0.0))
shaded = shading * kd
return shaded, shading
def render_bones(mvp, bones_pred, size=(256, 256)):
bone_world4 = torch.concat([bones_pred, torch.ones_like(bones_pred[..., :1]).to(bones_pred.device)], dim=-1)
b, f, num_bones = bone_world4.shape[:3]
bones_clip4 = (bone_world4.view(b, f, num_bones*2, 1, 4) @ mvp.transpose(-1, -2).reshape(b, f, 1, 4, 4)).view(b, f, num_bones, 2, 4)
bones_uv = bones_clip4[..., :2] / bones_clip4[..., 3:4] # b, f, num_bones, 2, 2
dpi = 32
fx, fy = size[1] // dpi, size[0] // dpi
rendered = []
for b_idx in range(b):
for f_idx in range(f):
frame_bones_uv = bones_uv[b_idx, f_idx].cpu().numpy()
fig = plt.figure(figsize=(fx, fy), dpi=dpi, frameon=False)
ax = plt.Axes(fig, [0., 0., 1., 1.])
ax.set_axis_off()
for bone in frame_bones_uv:
ax.plot(bone[:, 0], bone[:, 1], marker='o', linewidth=8, markersize=20)
ax.set_xlim(-1, 1)
ax.set_ylim(-1, 1)
ax.invert_yaxis()
# Convert to image
fig.add_axes(ax)
fig.canvas.draw_idle()
image = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8)
w, h = fig.canvas.get_width_height()
image.resize(h, w, 3)
rendered += [image / 255.]
return torch.from_numpy(np.stack(rendered, 0).transpose(0, 3, 1, 2)).to(bones_pred.device)
def add_mesh_color(mesh, color):
verts = mesh.verts_padded()
color = torch.FloatTensor(color).to(verts.device).view(1,1,3) / 255
mesh.textures = renderer.TexturesVertex(verts_features=verts*0+color)
return mesh
def create_sphere(position, scale, device, color=[139, 149, 173]):
mesh = utils.ico_sphere(2).to(device)
mesh = mesh.extend(position.shape[0])
# scale and offset
mesh = mesh.update_padded(mesh.verts_padded() * scale + position[:, None])
mesh = add_mesh_color(mesh, color)
return mesh
def estimate_bone_rotation(b):
"""
(0, 0, 1) = matmul(R^(-1), b)
assumes x, y is a symmetry plane
returns R
"""
b = b / torch.norm(b, dim=-1, keepdim=True)
n = torch.FloatTensor([[1, 0, 0]]).to(b.device)
n = n.expand_as(b)
v = torch.cross(b, n, dim=-1)
R = torch.stack([n, v, b], dim=-1).transpose(-2, -1)
return R
def estimate_vector_rotation(vector_a, vector_b):
"""
vector_a = matmul(R, vector_b)
returns R
https://math.stackexchange.com/questions/180418/calculate-rotation-matrix-to-align-vector-a-to-vector-b-in-3d
"""
vector_a = vector_a / torch.norm(vector_a, dim=-1, keepdim=True)
vector_b = vector_b / torch.norm(vector_b, dim=-1, keepdim=True)
v = torch.cross(vector_a, vector_b, dim=-1)
c = torch.sum(vector_a * vector_b, dim=-1)
skew = torch.stack([
torch.stack([torch.zeros_like(v[..., 0]), -v[..., 2], v[..., 1]], dim=-1),
torch.stack([v[..., 2], torch.zeros_like(v[..., 0]), -v[..., 0]], dim=-1),
torch.stack([-v[..., 1], v[..., 0], torch.zeros_like(v[..., 0])], dim=-1)],
dim=-1)
R = torch.eye(3, device=vector_a.device)[None] + skew + torch.matmul(skew, skew) / (1 + c[..., None, None])
return R
def create_elipsoid(bone, scale=0.05, color=[139, 149, 173], generic_rotation_estim=True):
length = torch.norm(bone[:, 0] - bone[:, 1], dim=-1)
mesh = utils.ico_sphere(2).to(bone.device)
mesh = mesh.extend(bone.shape[0])
# scale x, y
verts = mesh.verts_padded() * torch.FloatTensor([scale, scale, 1]).to(bone.device)
# stretch along z axis, set the start to origin
verts[:, :, 2] = verts[:, :, 2] * length[:, None] * 0.5 + length[:, None] * 0.5
bone_vector = bone[:, 1] - bone[:, 0]
z_vector = torch.FloatTensor([[0, 0, 1]]).to(bone.device)
z_vector = z_vector.expand_as(bone_vector)
if generic_rotation_estim:
rot = estimate_vector_rotation(z_vector, bone_vector)
else:
rot = estimate_bone_rotation(bone_vector)
tsf = transforms.Rotate(rot, device=bone.device)
tsf = tsf.compose(transforms.Translate(bone[:, 0], device=bone.device))
verts = tsf.transform_points(verts)
mesh = mesh.update_padded(verts)
mesh = add_mesh_color(mesh, color)
return mesh
def convert_textures_vertex_to_textures_uv(meshes: structures.Meshes, color1, color2) -> renderer.TexturesUV:
"""
Convert a TexturesVertex object to a TexturesUV object.
"""
color1 = torch.Tensor(color1).to(meshes.device).view(1, 1, 3) / 255
color2 = torch.Tensor(color2).to(meshes.device).view(1, 1, 3) / 255
textures_vertex = meshes.textures
assert isinstance(textures_vertex, renderer.TexturesVertex), "Input meshes must have TexturesVertex"
verts_rgb = textures_vertex.verts_features_padded()
faces_uvs = meshes.faces_padded()
batch_size = verts_rgb.shape[0]
maps = torch.zeros(batch_size, 128, 128, 3, device=verts_rgb.device)
maps[:, :, :64, :] = color1
maps[:, :, 64:, :] = color2
is_first = (verts_rgb == color1)[..., 0]
verts_uvs = torch.zeros(batch_size, verts_rgb.shape[1], 2, device=verts_rgb.device)
verts_uvs[is_first] = torch.FloatTensor([0.25, 0.5]).to(verts_rgb.device)
verts_uvs[~is_first] = torch.FloatTensor([0.75, 0.5]).to(verts_rgb.device)
textures_uv = renderer.TexturesUV(maps=maps, faces_uvs=faces_uvs, verts_uvs=verts_uvs)
meshes.textures = textures_uv
return meshes
def create_bones_scene(bones, joint_color=[66, 91, 140], bone_color=[119, 144, 189], show_end_point=False):
meshes = []
for bone_i in range(bones.shape[1]):
# points
meshes += [create_sphere(bones[:, bone_i, 0], 0.1, bones.device, color=joint_color)]
if show_end_point:
meshes += [create_sphere(bones[:, bone_i, 1], 0.1, bones.device, color=joint_color)]
# connecting ellipsoid
meshes += [create_elipsoid(bones[:, bone_i], color=bone_color)]
current_batch_size = bones.shape[0]
meshes = [structures.join_meshes_as_scene([m[i] for m in meshes]) for i in range(current_batch_size)]
mesh = structures.join_meshes_as_batch(meshes)
return mesh
def save_mesh(mesh, file_path):
obj_file = file_path
idx = 0
print("Writing mesh: ", obj_file)
with open(obj_file, "w") as f:
# f.write(f"mtllib {fname}.mtl\n")
f.write("g default\n")
v_pos = mesh.v_pos[idx].detach().cpu().numpy() if mesh.v_pos is not None else None
v_nrm = mesh.v_nrm[idx].detach().cpu().numpy() if mesh.v_nrm is not None else None
v_tex = mesh.v_tex[idx].detach().cpu().numpy() if mesh.v_tex is not None else None
t_pos_idx = mesh.t_pos_idx[0].detach().cpu().numpy() if mesh.t_pos_idx is not None else None
t_nrm_idx = mesh.t_nrm_idx[0].detach().cpu().numpy() if mesh.t_nrm_idx is not None else None
t_tex_idx = mesh.t_tex_idx[0].detach().cpu().numpy() if mesh.t_tex_idx is not None else None
print(" writing %d vertices" % len(v_pos))
for v in v_pos:
f.write('v {} {} {} \n'.format(v[0], v[1], v[2]))
if v_nrm is not None:
print(" writing %d normals" % len(v_nrm))
assert(len(t_pos_idx) == len(t_nrm_idx))
for v in v_nrm:
f.write('vn {} {} {}\n'.format(v[2], v[1], v[0]))
# faces
f.write("s 1 \n")
f.write("g pMesh1\n")
f.write("usemtl defaultMat\n")
# Write faces
print(" writing %d faces" % len(t_pos_idx))
for i in range(len(t_pos_idx)):
f.write("f ")
for j in range(3):
f.write(' %s/%s/%s' % (str(t_pos_idx[i][j]+1), '' if v_tex is None else str(t_tex_idx[i][j]+1), '' if v_nrm is None else str(t_nrm_idx[i][j]+1)))
f.write("\n")
def process_mesh(shape, name):
mesh = shape.clone()
output_glb = f'./{name}.glb'
output_obj = f'./{name}.obj'
# save the obj file for download
save_mesh(mesh, output_obj)
# save the glb for visualize
mesh_tri = trimesh.Trimesh(
vertices=mesh.v_pos[0].detach().cpu().numpy(),
faces=mesh.t_pos_idx[0][..., [2,1,0]].detach().cpu().numpy(),
process=False,
maintain_order=True
)
norm_colors = (mesh.v_nrm[0][..., [2,1,0]].detach().cpu().numpy() + 1.0) * 0.5 * 1.8 * 255.0
norm_colors = np.clip(norm_colors, 0, 255)
mesh_tri.visual.vertex_colors = norm_colors
mesh_tri.export(file_obj=output_glb)
return output_glb, output_obj
def run_pipeline(model_items, cfgs, input_img):
epoch = 999
total_iter = 999999
model = model_items[0]
memory_bank = model_items[1]
memory_bank_keys = model_items[2]
device = f'cuda:{_GPU_ID}'
input_image = torch.stack([torchvision.transforms.ToTensor()(input_img)], dim=0).to(device)
with torch.no_grad():
model.netPrior.eval()
model.netInstance.eval()
input_image = torch.nn.functional.interpolate(input_image, size=(256, 256), mode='bilinear', align_corners=False)
input_image = input_image[:, None, :, :] # [B=1, F=1, 3, 256, 256]
bank_embedding = get_bank_embedding(
input_image,
memory_bank_keys,
memory_bank,
model,
memory_bank_topk=cfgs.get("memory_bank_topk", 10),
memory_bank_dim=128
)
prior_shape, dino_pred, classes_vectors = model.netPrior(
category_name='tmp',
perturb_sdf=False,
total_iter=total_iter,
is_training=False,
class_embedding=bank_embedding
)
Instance_out = model.netInstance(
'tmp',
input_image,
prior_shape,
epoch,
dino_features=None,
dino_clusters=None,
total_iter=total_iter,
is_training=False
) # frame dim collapsed N=(B*F)
if len(Instance_out) == 13:
shape, pose_raw, pose, mvp, w2c, campos, texture_pred, im_features, dino_feat_im_calc, deform, all_arti_params, light, forward_aux = Instance_out
im_features_map = None
else:
shape, pose_raw, pose, mvp, w2c, campos, texture_pred, im_features, dino_feat_im_calc, deform, all_arti_params, light, forward_aux, im_features_map = Instance_out
class_vector = classes_vectors # the bank embeddings
gray_light = FixedDirectionLight(direction=torch.FloatTensor([0, 0, 1]).to(device), amb=0.2, diff=0.7)
image_pred, mask_pred, _, _, _, shading = model.render(
shape, texture_pred, mvp, w2c, campos, (256, 256), background=model.background_mode,
im_features=im_features, light=gray_light, prior_shape=prior_shape, render_mode='diffuse',
render_flow=False, dino_pred=None, im_features_map=im_features_map
)
mask_pred = mask_pred.expand_as(image_pred)
shading = shading.expand_as(image_pred)
# render bones in pytorch3D style
posed_bones = forward_aux["posed_bones"].squeeze(1)
jc, bc = [66, 91, 140], [119, 144, 189]
bones_meshes = create_bones_scene(posed_bones, joint_color=jc, bone_color=bc, show_end_point=True)
bones_meshes = convert_textures_vertex_to_textures_uv(bones_meshes, color1=jc, color2=bc)
nv_meshes = make_mesh(verts=bones_meshes.verts_padded(), faces=bones_meshes.faces_padded()[0:1],
uvs=bones_meshes.textures.verts_uvs_padded(), uv_idx=bones_meshes.textures.faces_uvs_padded()[0:1],
material=material_texture.Texture2D(bones_meshes.textures.maps_padded()))
# buffers = render_mesh(dr.RasterizeGLContext(), nv_meshes, mvp, w2c, campos, nv_meshes.material, lgt=gray_light, feat=im_features, dino_pred=None, resolution=(256,256), bsdf="diffuse")
buffers = render_mesh(dr.RasterizeCudaContext(), nv_meshes, mvp, w2c, campos, nv_meshes.material, lgt=gray_light, feat=im_features, dino_pred=None, resolution=(256,256), bsdf="diffuse")
shaded = buffers["shaded"].permute(0, 3, 1, 2)
bone_image = shaded[:, :3, :, :]
bone_mask = shaded[:, 3:, :, :]
mask_final = mask_pred.logical_or(bone_mask)
mask_final = mask_final.int()
image_with_bones = bone_image * bone_mask * 0.5 + (shading * (1 - bone_mask * 0.5) + 0.5 * (mask_final.float() - mask_pred.float()))
mesh_image = save_images(shading, mask_pred)
mesh_bones_image = save_images(image_with_bones, mask_final)
shape_glb, shape_obj = process_mesh(shape, 'reconstructed_shape')
base_shape_glb, base_shape_obj = process_mesh(prior_shape, 'reconstructed_base_shape')
return mesh_image, mesh_bones_image, shape_glb, shape_obj, base_shape_glb, base_shape_obj
def run_demo():
parser = argparse.ArgumentParser()
parser.add_argument('--gpu', default='0', type=str,
help='Specify a GPU device')
parser.add_argument('--num_workers', default=4, type=int,
help='Specify the number of worker threads for data loaders')
parser.add_argument('--seed', default=0, type=int,
help='Specify a random seed')
parser.add_argument('--config', default='./ckpts/configs.yml',
type=str) # Model config path
parser.add_argument('--checkpoint_path', default='./ckpts/iter0800000.pth', type=str)
args = parser.parse_args()
torch.manual_seed(args.seed)
os.environ['MASTER_ADDR'] = 'localhost'
os.environ['MASTER_PORT'] = '8088'
dist.init_process_group("gloo", rank=_GPU_ID, world_size=1)
torch.cuda.set_device(_GPU_ID)
args.rank = _GPU_ID
args.world_size = 1
args.gpu = f'{_GPU_ID}'
device = f'cuda:{_GPU_ID}'
resolution = (256, 256)
batch_size = 1
model_cfgs = setup_runtime(args)
bone_y_thresh = 0.4
body_bone_idx_preset = [3, 6, 6, 3]
model_cfgs['body_bone_idx_preset'] = body_bone_idx_preset
model = Unsup3DDDP(model_cfgs)
# a hack attempt
model.netPrior.classes_vectors = torch.nn.Parameter(torch.nn.init.uniform_(torch.empty(123, 128), a=-0.05, b=0.05))
cp = torch.load(args.checkpoint_path, map_location=device)
model.load_model_state(cp)
memory_bank_keys = cp['memory_bank_keys']
memory_bank = cp['memory_bank']
model.to(device)
memory_bank.to(device)
memory_bank_keys.to(device)
model_items = [
model,
memory_bank,
memory_bank_keys
]
predictor = sam_init()
custom_theme = gr.themes.Soft(primary_hue="blue").set(
button_secondary_background_fill="*neutral_100",
button_secondary_background_fill_hover="*neutral_200")
custom_css = '''#disp_image {
text-align: center; /* Horizontally center the content */
}'''
with gr.Blocks(title=_TITLE, theme=custom_theme, css=custom_css) as demo:
with gr.Row():
with gr.Column(scale=1):
gr.Markdown('# ' + _TITLE)
gr.Markdown(_DESCRIPTION)
with gr.Row(variant='panel'):
with gr.Column(scale=1):
input_image = gr.Image(type='pil', image_mode='RGBA', height=256, label='Input image', tool=None)
example_folder = os.path.join(os.path.dirname(__file__), "./example_images")
example_fns = [os.path.join(example_folder, example) for example in os.listdir(example_folder)]
gr.Examples(
examples=example_fns,
inputs=[input_image],
# outputs=[input_image],
cache_examples=False,
label='Examples (click one of the images below to start)',
examples_per_page=30
)
with gr.Column(scale=1):
processed_image = gr.Image(type='pil', label="Processed Image", interactive=False, height=256, tool=None, image_mode='RGB', elem_id="disp_image")
processed_image_highres = gr.Image(type='pil', image_mode='RGB', visible=False, tool=None)
with gr.Accordion('Advanced options', open=True):
with gr.Row():
with gr.Column():
input_processing = gr.CheckboxGroup(['Use SAM to center animal'],
label='Input Image Preprocessing',
info='untick this, if animal is already centered, e.g. in example images')
# with gr.Column():
# output_processing = gr.CheckboxGroup(['Background Removal'], label='Output Image Postprocessing', value=[])
# with gr.Row():
# with gr.Column():
# scale_slider = gr.Slider(1, 5, value=3, step=1,
# label='Classifier Free Guidance Scale')
# with gr.Column():
# steps_slider = gr.Slider(15, 100, value=50, step=1,
# label='Number of Diffusion Inference Steps')
# with gr.Row():
# with gr.Column():
# seed = gr.Number(42, label='Seed')
# with gr.Column():
# crop_size = gr.Number(192, label='Crop size')
# crop_size = 192
run_btn = gr.Button('Reconstruct', variant='primary', interactive=True)
with gr.Row():
view_1 = gr.Image(label="Input View Reconstruction", interactive=False, height=256, show_label=True)
view_2 = gr.Image(label="Input View Reconstruction with Skeleton", interactive=False, height=256, show_label=True)
with gr.Row():
shape_1 = gr.Model3D(clear_color=[0.0, 0.0, 0.0, 0.0], height=512, label="Reconstructed Shape")
shape_2 = gr.Model3D(clear_color=[0.0, 0.0, 0.0, 0.0], height=512, label="Reconstructed Base Shape")
#shape_1_download = gr.File(label="Download Full Reconstructed Model")
with gr.Row():
# shape_2 = gr.Model3D(clear_color=[0.0, 0.0, 0.0, 0.0], height=512, label="Bank Base Shape Model")
shape_1_download = gr.File(label="Download Reconstructed Shape")
shape_2_download = gr.File(label="Download Reconstructed Base Shape")
run_btn.click(fn=partial(preprocess, predictor),
inputs=[input_image, input_processing],
outputs=[processed_image_highres, processed_image], queue=True
).success(fn=partial(run_pipeline, model_items, model_cfgs),
inputs=[processed_image],
outputs=[view_1, view_2, shape_1, shape_1_download, shape_2, shape_2_download]
)
demo.queue().launch(share=True, max_threads=80)
# _, local_url, share_url = demo.queue().launch(share=True, server_name="0.0.0.0", server_port=23425)
# print('local_url: ', local_url)
if __name__ == '__main__':
fire.Fire(run_demo) |