File size: 18,849 Bytes
98a77e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
import os
from glob import glob
import random
import numpy as np
from PIL import Image
import cv2
import torch
from torch.utils.data import Dataset
import torchvision.datasets.folder
import torchvision.transforms as transforms
from einops import rearrange


def compute_distance_transform(mask):
    mask_dt = []
    for m in mask:
        dt = torch.FloatTensor(cv2.distanceTransform(np.uint8(m[0]), cv2.DIST_L2, cv2.DIST_MASK_PRECISE))
        inv_dt = torch.FloatTensor(cv2.distanceTransform(np.uint8(1 - m[0]), cv2.DIST_L2, cv2.DIST_MASK_PRECISE))
        mask_dt += [torch.stack([dt, inv_dt], 0)]
    return torch.stack(mask_dt, 0)  # Bx2xHxW


def crop_image(image, boxs, size):
    crops = []
    for box in boxs:
        crop_x0, crop_y0, crop_w, crop_h = box
        crop = transforms.functional.resized_crop(image, crop_y0, crop_x0, crop_h, crop_w, size)
        crop = transforms.functional.to_tensor(crop)
        crops += [crop]
    return torch.stack(crops, 0)


def box_loader(fpath):
    box = np.loadtxt(fpath, 'str')
    box[0] = box[0].split('_')[0]
    return box.astype(np.float32)


def read_feat_from_img(path, n_channels):
    feat = np.array(Image.open(path))
    return dencode_feat_from_img(feat, n_channels)


def dencode_feat_from_img(img, n_channels):
    n_addon_channels = int(np.ceil(n_channels / 3) * 3) - n_channels
    n_tiles = int((n_channels + n_addon_channels) / 3)
    feat = rearrange(img, 'h (t w) c -> h w (t c)', t=n_tiles, c=3)
    feat = feat[:, :, :-n_addon_channels]
    feat = feat.astype('float32') / 255
    return feat.transpose(2, 0, 1)


def dino_loader(fpath, n_channels):
    dino_map = read_feat_from_img(fpath, n_channels)
    return dino_map


def get_valid_mask(boxs, image_size):
    valid_masks = []
    for box in boxs:
        crop_x0, crop_y0, crop_w, crop_h, full_w, full_h = box[1:7].int().numpy()
        # Discard a small margin near the boundary.
        margin_w = int(crop_w * 0.02)
        margin_h = int(crop_h * 0.02)
        mask_full = torch.ones(full_h-margin_h*2, full_w-margin_w*2)
        mask_full_pad = torch.nn.functional.pad(mask_full, (crop_w+margin_w, crop_w+margin_w, crop_h+margin_h, crop_h+margin_h), mode='constant', value=0.0)
        mask_full_crop = mask_full_pad[crop_y0+crop_h:crop_y0+crop_h*2, crop_x0+crop_w:crop_x0+crop_w*2]
        mask_crop = torch.nn.functional.interpolate(mask_full_crop[None, None, :, :], image_size, mode='nearest')[0,0]
        valid_masks += [mask_crop]
    return torch.stack(valid_masks, 0)  # NxHxW


def horizontal_flip_box(box):
    frame_id, crop_x0, crop_y0, crop_w, crop_h, full_w, full_h, sharpness, label = box.unbind(1)
    box[:,1] = full_w - crop_x0 - crop_w  # x0
    return box


def horizontal_flip_all(images, masks, mask_dt, mask_valid, flows, bboxs, bg_images, dino_features=None, dino_clusters=None):
    images = images.flip(3)  # NxCxHxW
    masks = masks.flip(3)  # NxCxHxW
    mask_dt = mask_dt.flip(3)  # NxCxHxW
    mask_valid = mask_valid.flip(2)  # NxHxW
    if flows.dim() > 1:
        flows = flows.flip(3)  # (N-1)x(x,y)xHxW
        flows[:,0] *= -1  # invert delta x
    bboxs = horizontal_flip_box(bboxs)  # NxK
    bg_images = bg_images.flip(3)  # NxCxHxW
    if dino_features.dim() > 1:
        dino_features = dino_features.flip(3)
    if dino_clusters.dim() > 1:
        dino_clusters = dino_clusters.flip(3)
    return images, masks, mask_dt, mask_valid, flows, bboxs, bg_images, dino_features, dino_clusters


class BaseSequenceDataset(Dataset):
    def __init__(self, root, skip_beginning=4, skip_end=4, min_seq_len=10, debug_seq=False):
        super().__init__()

        self.skip_beginning = skip_beginning
        self.skip_end = skip_end
        self.min_seq_len = min_seq_len
        # self.pattern = "{:07d}_{}"
        self.sequences = self._make_sequences(root)

        if debug_seq:
            # self.sequences = [self.sequences[0][20:160]] * 100
            seq_len = 0
            while seq_len < min_seq_len:
                i = np.random.randint(len(self.sequences))
                rand_seq = self.sequences[i]
                seq_len = len(rand_seq)
            self.sequences = [rand_seq]

        self.samples = []

    def _make_sequences(self, path):
        result = []
        for d in sorted(os.scandir(path), key=lambda e: e.name):
            if d.is_dir():
                files = self._parse_folder(d)
                if len(files) >= self.min_seq_len:
                    result.append(files)
        return result

    def _parse_folder(self, path):
        result = sorted(glob(os.path.join(path, '*'+self.image_loaders[0][0])))
        result = [p.replace(self.image_loaders[0][0], '{}') for p in result]

        if len(result) <= self.skip_beginning + self.skip_end:
            return []
        if self.skip_end == 0:
            return result[self.skip_beginning:]
        return result[self.skip_beginning:-self.skip_end]

    def _load_ids(self, path_patterns, loaders, transform=None):
        result = []
        for loader in loaders:
            for p in path_patterns:
                x = loader[1](p.format(loader[0]), *loader[2:])
                if transform:
                    x = transform(x)
                result.append(x)
        return tuple(result)

    def __len__(self):
        return len(self.samples)

    def __getitem__(self, index):
        raise NotImplemented("This is a base class and should not be used directly")


class NFrameSequenceDataset(BaseSequenceDataset):
    def __init__(self, root, cat_name=None, num_sample_frames=2, skip_beginning=4, skip_end=4, min_seq_len=10, in_image_size=256, out_image_size=256, debug_seq=False, random_sample=False, shuffle=False, dense_sample=True, color_jitter=None, load_background=False, random_flip=False, rgb_suffix='.png', load_dino_feature=False, load_dino_cluster=False, dino_feature_dim=64, **kwargs):
        self.cat_name = cat_name
        self.image_loaders = [("rgb"+rgb_suffix, torchvision.datasets.folder.default_loader)]
        self.mask_loaders = [("mask.png", torchvision.datasets.folder.default_loader)]
        self.bbox_loaders = [("box.txt", box_loader)]
        super().__init__(root, skip_beginning, skip_end, min_seq_len, debug_seq)
        if num_sample_frames > 1:
            self.flow_loaders = [("flow.png", cv2.imread, cv2.IMREAD_UNCHANGED)]
        else:
            self.flow_loaders = None

        self.num_sample_frames = num_sample_frames
        self.random_sample = random_sample
        if self.random_sample:
            if shuffle:
                random.shuffle(self.sequences)
            self.samples = self.sequences
        else:
            for i, s in enumerate(self.sequences):
                stride = 1 if dense_sample else self.num_sample_frames
                self.samples += [(i, k) for k in range(0, len(s), stride)]
            if shuffle:
                random.shuffle(self.samples)

        self.in_image_size = in_image_size
        self.out_image_size = out_image_size
        self.load_background = load_background
        self.color_jitter = color_jitter
        self.image_transform = transforms.Compose([transforms.Resize(self.in_image_size), transforms.ToTensor()])
        self.mask_transform = transforms.Compose([transforms.Resize(self.out_image_size, interpolation=Image.NEAREST), transforms.ToTensor()])
        if self.flow_loaders is not None:
            self.flow_transform = lambda x: (torch.FloatTensor(x.astype(np.float32)).flip(2)[:,:,:2] / 65535. ) *2 -1
        self.random_flip = random_flip
        self.load_dino_feature = load_dino_feature
        if load_dino_feature:
            self.dino_feature_loaders = [(f"feat{dino_feature_dim}.png", dino_loader, dino_feature_dim)]
        self.load_dino_cluster = load_dino_cluster
        if load_dino_cluster:
            self.dino_cluster_loaders = [("clusters.png", torchvision.datasets.folder.default_loader)]

    def __getitem__(self, index):
        if self.random_sample:
            seq_idx = index % len(self.sequences)
            seq = self.sequences[seq_idx]
            if len(seq) < self.num_sample_frames:
                start_frame_idx = 0
            else:
                start_frame_idx = np.random.randint(len(seq)-self.num_sample_frames+1)
            paths = seq[start_frame_idx:start_frame_idx+self.num_sample_frames]
        else:
            seq_idx, start_frame_idx = self.samples[index % len(self.samples)]
            seq = self.sequences[seq_idx]
            # Handle edge case: when only last frame is left, sample last two frames, except if the sequence only has one frame
            if len(seq) <= start_frame_idx +1:
                start_frame_idx = max(0, start_frame_idx-1)
            paths = seq[start_frame_idx:start_frame_idx+self.num_sample_frames]

        masks = torch.stack(self._load_ids(paths, self.mask_loaders, transform=self.mask_transform), 0)  # load all images
        mask_dt = compute_distance_transform(masks)
        jitter = False
        if self.color_jitter is not None:
            prob, b, h = self.color_jitter
            if np.random.rand() < prob:
                jitter = True
                color_jitter_tsf_fg = transforms.ColorJitter.get_params(brightness=(1-b, 1+b), contrast=None, saturation=None, hue=(-h, h))
                image_transform_fg = transforms.Compose([transforms.Resize(self.in_image_size), color_jitter_tsf_fg, transforms.ToTensor()])
                color_jitter_tsf_bg = transforms.ColorJitter.get_params(brightness=(1-b, 1+b), contrast=None, saturation=None, hue=(-h, h))
                image_transform_bg = transforms.Compose([transforms.Resize(self.in_image_size), color_jitter_tsf_bg, transforms.ToTensor()])
        if jitter:
            images_fg = torch.stack(self._load_ids(paths, self.image_loaders, transform=image_transform_fg), 0)  # load all images
            images_bg = torch.stack(self._load_ids(paths, self.image_loaders, transform=image_transform_bg), 0)  # load all images
            images = images_fg * masks + images_bg * (1-masks)
        else:
            images = torch.stack(self._load_ids(paths, self.image_loaders, transform=self.image_transform), 0)  # load all images
        if len(paths) > 1:
            flows = torch.stack(self._load_ids(paths[:-1], self.flow_loaders, transform=self.flow_transform), 0).permute(0,3,1,2)   # load flow for first image, (N-1)x(x,y)xHxW, -1~1
            flows = torch.nn.functional.interpolate(flows, size=self.out_image_size, mode="bilinear")
        else:
            flows = torch.zeros(1)
        bboxs = torch.stack(self._load_ids(paths, self.bbox_loaders, transform=torch.FloatTensor), 0)   # load bounding boxes for all images        
        mask_valid = get_valid_mask(bboxs, (self.out_image_size, self.out_image_size))  # exclude pixels cropped outside the original image
        if self.load_background:
            bg_image = torchvision.datasets.folder.default_loader(os.path.join(os.path.dirname(paths[0]), 'background_frame.jpg'))
            if jitter:
                bg_image = color_jitter_tsf_bg(bg_image)
            bg_images = crop_image(bg_image, bboxs[:, 1:5].int().numpy(), (self.in_image_size, self.in_image_size))
        else:
            bg_images = torch.zeros_like(images)
        if self.load_dino_feature:
            dino_features = torch.stack(self._load_ids(paths, self.dino_feature_loaders, transform=torch.FloatTensor), 0)  # BxFx64x224x224
        else:
            dino_features = torch.zeros(1)
        if self.load_dino_cluster:
            dino_clusters = torch.stack(self._load_ids(paths, self.dino_cluster_loaders, transform=transforms.ToTensor()), 0)  # BxFx3x55x55
        else:
            dino_clusters = torch.zeros(1)
        seq_idx = torch.LongTensor([seq_idx])
        frame_idx = torch.arange(start_frame_idx, start_frame_idx+len(paths)).long()

        if self.random_flip and np.random.rand() < 0.5:
            images, masks, mask_dt, mask_valid, flows, bboxs, bg_images, dino_features, dino_clusters = horizontal_flip_all(images, masks, mask_dt, mask_valid, flows, bboxs, bg_images, dino_features, dino_clusters)

        ## pad shorter sequence
        if len(paths) < self.num_sample_frames:
            num_pad = self.num_sample_frames - len(paths)
            images = torch.cat([images[:1]] *num_pad + [images], 0)
            masks = torch.cat([masks[:1]] *num_pad + [masks], 0)
            mask_dt = torch.cat([mask_dt[:1]] *num_pad + [mask_dt], 0)
            mask_valid = torch.cat([mask_valid[:1]] *num_pad + [mask_valid], 0)
            if flows.dim() > 1:
                flows = torch.cat([flows[:1]*0] *num_pad + [flows], 0)
            bboxs = torch.cat([bboxs[:1]] * num_pad + [bboxs], 0)
            bg_images = torch.cat([bg_images[:1]] *num_pad + [bg_images], 0)
            if dino_features.dim() > 1:
                dino_features = torch.cat([dino_features[:1]] *num_pad + [dino_features], 0)
            if dino_clusters.dim() > 1:
                dino_clusters = torch.cat([dino_clusters[:1]] *num_pad + [dino_clusters], 0)
            frame_idx = torch.cat([frame_idx[:1]] *num_pad + [frame_idx], 0)

        return images, masks, mask_dt, mask_valid, flows, bboxs, bg_images, dino_features, dino_clusters, seq_idx, frame_idx, self.cat_name


def get_sequence_loader(data_dir, **kwargs):
    if isinstance(data_dir, dict):
        loaders = []
        for k, v in data_dir.items():
            dataset= NFrameSequenceDataset(v, cat_name=k, **kwargs)
            loader = torch.utils.data.DataLoader(dataset, batch_size=kwargs['batch_size'], shuffle=kwargs['shuffle'], num_workers=kwargs['num_workers'], pin_memory=True)
            loaders += [loader]
        return loaders
    else:
        return [get_sequence_loader_single(data_dir, **kwargs)]


def get_sequence_loader_single(data_dir, mode='all_frame', is_validation=False, batch_size=256, num_workers=4, in_image_size=256, out_image_size=256, debug_seq=False, num_sample_frames=2, skip_beginning=4, skip_end=4, min_seq_len=10, max_seq_len=256, random_sample=False, shuffle=False, dense_sample=True, color_jitter=None, load_background=False, random_flip=False, rgb_suffix='.jpg', load_dino_feature=False, load_dino_cluster=False, dino_feature_dim=64):
    if mode == 'n_frame':
        dataset = NFrameSequenceDataset(data_dir, num_sample_frames=num_sample_frames, skip_beginning=skip_beginning, skip_end=skip_end, min_seq_len=min_seq_len, in_image_size=in_image_size, out_image_size=out_image_size, debug_seq=debug_seq, random_sample=random_sample, shuffle=shuffle, dense_sample=dense_sample, color_jitter=color_jitter, load_background=load_background, random_flip=random_flip, rgb_suffix=rgb_suffix, load_dino_feature=load_dino_feature, load_dino_cluster=load_dino_cluster, dino_feature_dim=dino_feature_dim)
    else:
        raise NotImplementedError
    loader = torch.utils.data.DataLoader(
        dataset,
        batch_size=batch_size,
        shuffle=not is_validation,
        num_workers=num_workers,
        pin_memory=True
    )
    return loader


class ImageDataset(Dataset):
    def __init__(self, root, is_validation=False, image_size=256, color_jitter=None):
        super().__init__()
        self.image_loader = ("rgb.jpg", torchvision.datasets.folder.default_loader)
        self.mask_loader = ("mask.png", torchvision.datasets.folder.default_loader)
        self.bbox_loader = ("box.txt", np.loadtxt, 'str')
        self.samples = self._parse_folder(root)
        self.image_size = image_size
        self.color_jitter = color_jitter
        self.image_transform = transforms.Compose([transforms.Resize(self.image_size), transforms.ToTensor()])
        self.mask_transform = transforms.Compose([transforms.Resize(self.image_size, interpolation=Image.NEAREST), transforms.ToTensor()])

    def _parse_folder(self, path):
        result = sorted(glob(os.path.join(path, '**/*'+self.image_loader[0]), recursive=True))
        result = [p.replace(self.image_loader[0], '{}') for p in result]
        return result

    def _load_ids(self, path, loader, transform=None):
        x = loader[1](path.format(loader[0]), *loader[2:])
        if transform:
            x = transform(x)
        return x

    def __len__(self):
        return len(self.samples)

    def __getitem__(self, index):
        path = self.samples[index % len(self.samples)]
        masks = self._load_ids(path, self.mask_loader, transform=self.mask_transform).unsqueeze(0)
        mask_dt = compute_distance_transform(masks)
        jitter = False
        if self.color_jitter is not None:
            prob, b, h = self.color_jitter
            if np.random.rand() < prob:
                jitter = True
                color_jitter_tsf_fg = transforms.ColorJitter.get_params(brightness=(1-b, 1+b), contrast=None, saturation=None, hue=(-h, h))
                image_transform_fg = transforms.Compose([transforms.Resize(self.image_size), color_jitter_tsf_fg, transforms.ToTensor()])
                color_jitter_tsf_bg = transforms.ColorJitter.get_params(brightness=(1-b, 1+b), contrast=None, saturation=None, hue=(-h, h))
                image_transform_bg = transforms.Compose([transforms.Resize(self.image_size), color_jitter_tsf_bg, transforms.ToTensor()])
        if jitter:
            images_fg = self._load_ids(path, self.image_loader, transform=image_transform_fg).unsqueeze(0)
            images_bg = self._load_ids(path, self.image_loader, transform=image_transform_bg).unsqueeze(0)
            images = images_fg * masks + images_bg * (1-masks)
        else:
            images = self._load_ids(path, self.image_loader, transform=self.image_transform).unsqueeze(0)
        flows = torch.zeros(1)
        bboxs = self._load_ids(path, self.bbox_loader, transform=None)
        bboxs[0] = '0'
        bboxs = torch.FloatTensor(bboxs.astype('float')).unsqueeze(0)
        bg_fpath = os.path.join(os.path.dirname(path), 'background_frame.jpg')
        if os.path.isfile(bg_fpath):
            bg_image = torchvision.datasets.folder.default_loader(bg_fpath)
            if jitter:
                bg_image = color_jitter_tsf_bg(bg_image)
            bg_image = transforms.ToTensor()(bg_image)
        else:
            bg_image = images[0]
        seq_idx = torch.LongTensor([index])
        frame_idx = torch.LongTensor([0])
        return images, masks, mask_dt, flows, bboxs, bg_image, seq_idx, frame_idx


def get_image_loader(data_dir, is_validation=False, batch_size=256, num_workers=4, image_size=256, color_jitter=None):
    dataset = ImageDataset(data_dir, is_validation=is_validation, image_size=image_size, color_jitter=color_jitter)

    loader = torch.utils.data.DataLoader(
        dataset,
        batch_size=batch_size,
        shuffle=False,
        num_workers=num_workers,
        pin_memory=True
    )
    return loader