Spaces:
Sleeping
Sleeping
File size: 60,472 Bytes
98a77e0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 |
import os
from glob import glob
import random
import numpy as np
from PIL import Image
import cv2
import itertools
import torch
import copy
from torch.utils.data import Dataset
import torchvision.datasets.folder
import torchvision.transforms as transforms
from einops import rearrange
def compute_distance_transform(mask):
mask_dt = []
for m in mask:
dt = torch.FloatTensor(cv2.distanceTransform(np.uint8(m[0]), cv2.DIST_L2, cv2.DIST_MASK_PRECISE))
inv_dt = torch.FloatTensor(cv2.distanceTransform(np.uint8(1 - m[0]), cv2.DIST_L2, cv2.DIST_MASK_PRECISE))
mask_dt += [torch.stack([dt, inv_dt], 0)]
return torch.stack(mask_dt, 0) # Bx2xHxW
def crop_image(image, boxs, size):
crops = []
for box in boxs:
crop_x0, crop_y0, crop_w, crop_h = box
crop = transforms.functional.resized_crop(image, crop_y0, crop_x0, crop_h, crop_w, size)
crop = transforms.functional.to_tensor(crop)
crops += [crop]
return torch.stack(crops, 0)
def box_loader(fpath):
box = np.loadtxt(fpath, 'str')
box[0] = box[0].split('_')[0]
return box.astype(np.float32)
def read_feat_from_img(path, n_channels):
feat = np.array(Image.open(path))
return dencode_feat_from_img(feat, n_channels)
def dencode_feat_from_img(img, n_channels):
n_addon_channels = int(np.ceil(n_channels / 3) * 3) - n_channels
n_tiles = int((n_channels + n_addon_channels) / 3)
feat = rearrange(img, 'h (t w) c -> h w (t c)', t=n_tiles, c=3)
if n_addon_channels != 0:
feat = feat[:, :, :-n_addon_channels]
feat = feat.astype('float32') / 255
return feat.transpose(2, 0, 1)
def dino_loader(fpath, n_channels):
dino_map = read_feat_from_img(fpath, n_channels)
return dino_map
def get_valid_mask(boxs, image_size):
valid_masks = []
for box in boxs:
crop_x0, crop_y0, crop_w, crop_h, full_w, full_h = box[1:7].int().numpy()
margin_w = int(crop_w * 0.02)
margin_h = int(crop_h * 0.02)
mask_full = torch.ones(full_h-margin_h*2, full_w-margin_w*2)
mask_full_pad = torch.nn.functional.pad(mask_full, (crop_w+margin_w, crop_w+margin_w, crop_h+margin_h, crop_h+margin_h), mode='constant', value=0.0)
mask_full_crop = mask_full_pad[(crop_y0+crop_h):crop_y0+(crop_h*2), (crop_x0+crop_w):crop_x0+(crop_w*2)]
mask_crop = torch.nn.functional.interpolate(mask_full_crop[None, None, :, :], image_size, mode='nearest')[0,0]
valid_masks += [mask_crop]
return torch.stack(valid_masks, 0) # NxHxW
def horizontal_flip_box(box):
frame_id, crop_x0, crop_y0, crop_w, crop_h, full_w, full_h, sharpness, label = box.unbind(1)
box[:,1] = full_w - crop_x0 - crop_w # x0
return box
def horizontal_flip_all(images, masks, mask_dt, mask_valid, flows, bboxs, bg_images, dino_features=None, dino_clusters=None):
images = images.flip(3) # NxCxHxW
masks = masks.flip(3) # NxCxHxW
mask_dt = mask_dt.flip(3) # NxCxHxW
mask_valid = mask_valid.flip(2) # NxHxW
if flows.dim() > 1:
flows = flows.flip(3) # (N-1)x(x,y)xHxW
flows[:,0] *= -1 # invert delta x
bboxs = horizontal_flip_box(bboxs) # NxK
bg_images = bg_images.flip(3) # NxCxHxW
if dino_features.dim() > 1:
dino_features = dino_features.flip(3)
if dino_clusters.dim() > 1:
dino_clusters = dino_clusters.flip(3)
return images, masks, mask_dt, mask_valid, flows, bboxs, bg_images, dino_features, dino_clusters
def none_to_nan(x):
return torch.FloatTensor([float('nan')]) if x is None else x
class BaseSequenceDataset(Dataset):
def __init__(self, root, skip_beginning=4, skip_end=4, min_seq_len=10, debug_seq=False):
super().__init__()
self.skip_beginning = skip_beginning
self.skip_end = skip_end
self.min_seq_len = min_seq_len
# self.pattern = "{:07d}_{}"
self.sequences = self._make_sequences(root)
if debug_seq:
# self.sequences = [self.sequences[0][20:160]] * 100
seq_len = 0
while seq_len < min_seq_len:
i = np.random.randint(len(self.sequences))
rand_seq = self.sequences[i]
seq_len = len(rand_seq)
self.sequences = [rand_seq]
self.samples = []
def _make_sequences(self, path):
result = []
for d in sorted(os.scandir(path), key=lambda e: e.name):
if d.is_dir():
files = self._parse_folder(d)
if len(files) >= self.min_seq_len:
result.append(files)
return result
def _parse_folder(self, path):
result = sorted(glob(os.path.join(path, '*'+self.image_loaders[0][0])))
result = [p.replace(self.image_loaders[0][0], '{}') for p in result]
if len(result) <= self.skip_beginning + self.skip_end:
return []
if self.skip_end == 0:
return result[self.skip_beginning:]
return result[self.skip_beginning:-self.skip_end]
def _load_ids(self, path_patterns, loaders, transform=None):
result = []
for loader in loaders:
for p in path_patterns:
x = loader[1](p.format(loader[0]), *loader[2:])
if transform:
x = transform(x)
result.append(x)
return tuple(result)
def __len__(self):
return len(self.samples)
def __getitem__(self, index):
raise NotImplemented("This is a base class and should not be used directly")
class NFrameSequenceDataset(BaseSequenceDataset):
def __init__(self, root, cat_name=None, num_sample_frames=2, skip_beginning=4, skip_end=4, min_seq_len=10, in_image_size=256, out_image_size=256, debug_seq=False, random_sample=False, shuffle=False, dense_sample=True, color_jitter=None, load_background=False, random_flip=False, rgb_suffix='.png', load_dino_feature=False, load_dino_cluster=False, dino_feature_dim=64, flow_bool=False, **kwargs):
self.cat_name = cat_name
self.flow_bool=flow_bool
self.image_loaders = [("rgb"+rgb_suffix, torchvision.datasets.folder.default_loader)]
self.mask_loaders = [("mask.png", torchvision.datasets.folder.default_loader)]
self.bbox_loaders = [("box.txt", box_loader)]
super().__init__(root, skip_beginning, skip_end, min_seq_len, debug_seq)
# from IPython import embed; embed()
if flow_bool and num_sample_frames > 1:
self.flow_loaders = [("flow.png", cv2.imread, cv2.IMREAD_UNCHANGED)]
else:
self.flow_loaders = None
self.num_sample_frames = num_sample_frames
self.random_sample = random_sample
if self.random_sample:
if shuffle:
random.shuffle(self.sequences)
self.samples = self.sequences
else:
for i, s in enumerate(self.sequences):
stride = 1 if dense_sample else self.num_sample_frames
self.samples += [(i, k) for k in range(0, len(s), stride)]
if shuffle:
random.shuffle(self.samples)
self.in_image_size = in_image_size
self.out_image_size = out_image_size
self.load_background = load_background
self.color_jitter = color_jitter
self.image_transform = transforms.Compose([transforms.Resize(self.in_image_size), transforms.ToTensor()])
self.mask_transform = transforms.Compose([transforms.Resize(self.out_image_size, interpolation=Image.NEAREST), transforms.ToTensor()])
if self.flow_loaders is not None:
self.flow_transform = lambda x: (torch.FloatTensor(x.astype(np.float32)).flip(2)[:,:,:2] / 65535. ) *2 -1
self.random_flip = random_flip
self.load_dino_feature = load_dino_feature
if load_dino_feature:
self.dino_feature_loaders = [(f"feat{dino_feature_dim}.png", dino_loader, dino_feature_dim)]
self.load_dino_cluster = load_dino_cluster
if load_dino_cluster:
self.dino_cluster_loaders = [("clusters.png", torchvision.datasets.folder.default_loader)]
def __getitem__(self, index):
if self.random_sample:
seq_idx = index % len(self.sequences)
seq = self.sequences[seq_idx]
if len(seq) < self.num_sample_frames:
start_frame_idx = 0
else:
start_frame_idx = np.random.randint(len(seq)-self.num_sample_frames+1)
paths = seq[start_frame_idx:start_frame_idx+self.num_sample_frames]
else:
seq_idx, start_frame_idx = self.samples[index % len(self.samples)]
seq = self.sequences[seq_idx]
# Handle edge case: when only last frame is left, sample last two frames, except if the sequence only has one frame
if len(seq) <= start_frame_idx +1:
start_frame_idx = max(0, start_frame_idx-1)
paths = seq[start_frame_idx:start_frame_idx+self.num_sample_frames]
masks = torch.stack(self._load_ids(paths, self.mask_loaders, transform=self.mask_transform), 0) # load all images
mask_dt = compute_distance_transform(masks)
jitter = False
if self.color_jitter is not None:
prob, b, h = self.color_jitter
if np.random.rand() < prob:
jitter = True
color_jitter_tsf_fg = transforms.ColorJitter.get_params(brightness=(1-b, 1+b), contrast=None, saturation=None, hue=(-h, h))
image_transform_fg = transforms.Compose([transforms.Resize(self.in_image_size), color_jitter_tsf_fg, transforms.ToTensor()])
color_jitter_tsf_bg = transforms.ColorJitter.get_params(brightness=(1-b, 1+b), contrast=None, saturation=None, hue=(-h, h))
image_transform_bg = transforms.Compose([transforms.Resize(self.in_image_size), color_jitter_tsf_bg, transforms.ToTensor()])
if jitter:
images_fg = torch.stack(self._load_ids(paths, self.image_loaders, transform=image_transform_fg), 0) # load all images
images_bg = torch.stack(self._load_ids(paths, self.image_loaders, transform=image_transform_bg), 0) # load all images
images = images_fg * masks + images_bg * (1-masks)
else:
images = torch.stack(self._load_ids(paths, self.image_loaders, transform=self.image_transform), 0) # load all images
if self.flow_bool==True and len(paths) > 1:
flows = torch.stack(self._load_ids(paths[:-1], self.flow_loaders, transform=self.flow_transform), 0).permute(0,3,1,2) # load flow for first image, (N-1)x(x,y)xHxW, -1~1
flows = torch.nn.functional.interpolate(flows, size=self.out_image_size, mode="bilinear")
else:
flows = torch.zeros(1)
bboxs = torch.stack(self._load_ids(paths, self.bbox_loaders, transform=torch.FloatTensor), 0) # load bounding boxes for all images
mask_valid = get_valid_mask(bboxs, (self.out_image_size, self.out_image_size)) # exclude pixels cropped outside the original image
if self.load_background:
bg_image = torchvision.datasets.folder.default_loader(os.path.join(os.path.dirname(paths[0]), 'background_frame.jpg'))
if jitter:
bg_image = color_jitter_tsf_bg(bg_image)
bg_images = crop_image(bg_image, bboxs[:, 1:5].int().numpy(), (self.in_image_size, self.in_image_size))
else:
bg_images = torch.zeros_like(images)
if self.load_dino_feature:
dino_paths = [
x.replace(
"/viscam/projects/articulated/dor/AnimalsMotionDataset/splitted_data/Combine_data/dinov2_new",
"/viscam/projects/articulated/zzli/data_dino_5000/7_cat"
)
for x in paths
]
dino_features = torch.stack(self._load_ids(dino_paths, self.dino_feature_loaders, transform=torch.FloatTensor), 0)
# dino_features = torch.stack(self._load_ids(paths, self.dino_feature_loaders, transform=torch.FloatTensor), 0) # BxFx64x224x224
else:
dino_features = torch.zeros(1)
if self.load_dino_cluster:
dino_clusters = torch.stack(self._load_ids(paths, self.dino_cluster_loaders, transform=transforms.ToTensor()), 0) # BxFx3x55x55
else:
dino_clusters = torch.zeros(1)
seq_idx = torch.LongTensor([seq_idx])
frame_idx = torch.arange(start_frame_idx, start_frame_idx+len(paths)).long()
if self.random_flip and np.random.rand() < 0.5:
images, masks, mask_dt, mask_valid, flows, bboxs, bg_images, dino_features, dino_clusters = horizontal_flip_all(images, masks, mask_dt, mask_valid, flows, bboxs, bg_images, dino_features, dino_clusters)
## pad shorter sequence
if len(paths) < self.num_sample_frames:
num_pad = self.num_sample_frames - len(paths)
images = torch.cat([images[:1]] *num_pad + [images], 0)
masks = torch.cat([masks[:1]] *num_pad + [masks], 0)
mask_dt = torch.cat([mask_dt[:1]] *num_pad + [mask_dt], 0)
mask_valid = torch.cat([mask_valid[:1]] *num_pad + [mask_valid], 0)
if flows.dim() > 1:
flows = torch.cat([flows[:1]*0] *num_pad + [flows], 0)
bboxs = torch.cat([bboxs[:1]] * num_pad + [bboxs], 0)
bg_images = torch.cat([bg_images[:1]] *num_pad + [bg_images], 0)
if dino_features.dim() > 1:
dino_features = torch.cat([dino_features[:1]] *num_pad + [dino_features], 0)
if dino_clusters.dim() > 1:
dino_clusters = torch.cat([dino_clusters[:1]] *num_pad + [dino_clusters], 0)
frame_idx = torch.cat([frame_idx[:1]] *num_pad + [frame_idx], 0)
out = (*map(none_to_nan, (images, masks, mask_dt, mask_valid, flows, bboxs, bg_images, dino_features, dino_clusters, seq_idx, frame_idx, self.cat_name)), )
return out
# return images, masks, mask_dt, mask_valid, flows, bboxs, bg_images, dino_features, dino_clusters, seq_idx, frame_idx, self.cat_name
def few_shot_box_loader(fpath):
box = np.loadtxt(fpath, 'str')
# box[0] = box[0].split('_')[0]
return box.astype(np.float32)
class FewShotImageDataset(Dataset):
def __init__(self, root, cat_name=None, cat_num=0, num_sample_frames=2, in_image_size=256, out_image_size=256, shuffle=False, color_jitter=None, load_background=False, random_flip=False, rgb_suffix='.png', load_dino_feature=False, dino_feature_dim=64, flow_bool=False, **kwargs):
super().__init__()
self.cat_name = cat_name
self.cat_num = cat_num # this is actually useless
self.flow_bool=flow_bool
self.image_loaders = [("rgb"+rgb_suffix, torchvision.datasets.folder.default_loader)]
self.mask_loaders = [("mask.png", torchvision.datasets.folder.default_loader)]
self.bbox_loaders = [("box.txt", few_shot_box_loader)]
self.flow_loaders = None
# get all the valid paths, since it's just image-wise, in get_item, we will make it like a len=1 sequence
result = sorted(glob(os.path.join(root, '*'+self.image_loaders[0][0])))
result = [p.replace(self.image_loaders[0][0], '{}') for p in result]
self.sequences = result
self.num_sample_frames = num_sample_frames
if shuffle:
random.shuffle(self.sequences)
self.samples = self.sequences
self.in_image_size = in_image_size
self.out_image_size = out_image_size
self.load_background = load_background
self.color_jitter = color_jitter
self.image_transform = transforms.Compose([transforms.Resize(self.in_image_size), transforms.ToTensor()])
self.mask_transform = transforms.Compose([transforms.Resize(self.out_image_size, interpolation=Image.NEAREST), transforms.ToTensor()])
self.random_flip = random_flip
self.load_dino_feature = load_dino_feature
if load_dino_feature:
self.dino_feature_loaders = [(f"feat{dino_feature_dim}.png", dino_loader, dino_feature_dim)]
def _load_ids(self, path_patterns, loaders, transform=None):
result = []
for loader in loaders:
for p in path_patterns:
x = loader[1](p.format(loader[0]), *loader[2:])
if transform:
x = transform(x)
result.append(x)
return tuple(result)
def __len__(self):
return len(self.samples)
def __getitem__(self, index):
paths = [self.samples[index]] # len 1 sequence
masks = torch.stack(self._load_ids(paths, self.mask_loaders, transform=self.mask_transform), 0) # load all images
mask_dt = compute_distance_transform(masks)
jitter = False
if self.color_jitter is not None:
prob, b, h = self.color_jitter
if np.random.rand() < prob:
jitter = True
color_jitter_tsf_fg = transforms.ColorJitter.get_params(brightness=(1-b, 1+b), contrast=None, saturation=None, hue=(-h, h))
image_transform_fg = transforms.Compose([transforms.Resize(self.in_image_size), color_jitter_tsf_fg, transforms.ToTensor()])
color_jitter_tsf_bg = transforms.ColorJitter.get_params(brightness=(1-b, 1+b), contrast=None, saturation=None, hue=(-h, h))
image_transform_bg = transforms.Compose([transforms.Resize(self.in_image_size), color_jitter_tsf_bg, transforms.ToTensor()])
if jitter:
images_fg = torch.stack(self._load_ids(paths, self.image_loaders, transform=image_transform_fg), 0) # load all images
images_bg = torch.stack(self._load_ids(paths, self.image_loaders, transform=image_transform_bg), 0) # load all images
images = images_fg * masks + images_bg * (1-masks)
else:
images = torch.stack(self._load_ids(paths, self.image_loaders, transform=self.image_transform), 0) # load all images
flows = torch.zeros(1)
bboxs = torch.stack(self._load_ids(paths, self.bbox_loaders, transform=torch.FloatTensor), 0) # load bounding boxes for all images
bboxs=torch.cat([bboxs, torch.Tensor([[self.cat_num]]).float()],dim=-1) # pad a label number
mask_valid = get_valid_mask(bboxs, (self.out_image_size, self.out_image_size)) # exclude pixels cropped outside the original image
if self.load_background:
bg_image = torchvision.datasets.folder.default_loader(os.path.join(os.path.dirname(paths[0]), 'background_frame.jpg'))
if jitter:
bg_image = color_jitter_tsf_bg(bg_image)
bg_images = crop_image(bg_image, bboxs[:, 1:5].int().numpy(), (self.in_image_size, self.in_image_size))
else:
bg_images = torch.zeros_like(images)
if self.load_dino_feature:
dino_features = torch.stack(self._load_ids(paths, self.dino_feature_loaders, transform=torch.FloatTensor), 0) # BxFx64x224x224
else:
dino_features = torch.zeros(1)
dino_clusters = torch.zeros(1)
# These are actually no use
seq_idx = 0
seq_idx = torch.LongTensor([seq_idx])
frame_idx = torch.arange(0, 1).long()
if self.random_flip and np.random.rand() < 0.5:
images, masks, mask_dt, mask_valid, flows, bboxs, bg_images, dino_features, dino_clusters = horizontal_flip_all(images, masks, mask_dt, mask_valid, flows, bboxs, bg_images, dino_features, dino_clusters)
## pad shorter sequence
if len(paths) < self.num_sample_frames:
num_pad = self.num_sample_frames - len(paths)
images = torch.cat([images[:1]] *num_pad + [images], 0)
masks = torch.cat([masks[:1]] *num_pad + [masks], 0)
mask_dt = torch.cat([mask_dt[:1]] *num_pad + [mask_dt], 0)
mask_valid = torch.cat([mask_valid[:1]] *num_pad + [mask_valid], 0)
if flows.dim() > 1:
flows = torch.cat([flows[:1]*0] *num_pad + [flows], 0)
bboxs = torch.cat([bboxs[:1]] * num_pad + [bboxs], 0)
bg_images = torch.cat([bg_images[:1]] *num_pad + [bg_images], 0)
if dino_features.dim() > 1:
dino_features = torch.cat([dino_features[:1]] *num_pad + [dino_features], 0)
if dino_clusters.dim() > 1:
dino_clusters = torch.cat([dino_clusters[:1]] *num_pad + [dino_clusters], 0)
frame_idx = torch.cat([frame_idx[:1]] *num_pad + [frame_idx], 0)
out = (*map(none_to_nan, (images, masks, mask_dt, mask_valid, flows, bboxs, bg_images, dino_features, dino_clusters, seq_idx, frame_idx, self.cat_name)), )
return out
# return images, masks, mask_dt, mask_valid, flows, bboxs, bg_images, dino_features, dino_clusters, seq_idx, frame_idx, self.cat_name
class Quadrupeds_Image_Dataset(Dataset):
def __init__(self, original_data_dirs, few_shot_data_dirs, original_num=7, few_shot_num=93, num_sample_frames=2,
in_image_size=256, out_image_size=256, is_validation=False, val_image_num=5, shuffle=False, color_jitter=None,
load_background=False, random_flip=False, rgb_suffix='.png', load_dino_feature=False, dino_feature_dim=64,
flow_bool=False, disable_fewshot=False, dataset_split_num=-1, **kwargs):
self.original_data_dirs = original_data_dirs
self.few_shot_data_dirs = few_shot_data_dirs
self.original_num = original_num
self.few_shot_num = few_shot_num
self.image_loaders = [("rgb"+rgb_suffix, torchvision.datasets.folder.default_loader)]
self.mask_loaders = [("mask.png", torchvision.datasets.folder.default_loader)]
self.original_bbox_loaders = [("box.txt", box_loader)]
self.few_shot_bbox_loaders = [("box.txt", few_shot_box_loader)]
assert len(self.original_data_dirs.keys()) == self.original_num
assert len(self.few_shot_data_dirs.keys()) == self.few_shot_num
self.num_sample_frames = num_sample_frames
self.batch_size = kwargs['batch_size'] # a hack way here
# for debug, just use some categories
if "override_categories" in kwargs:
self.override_categories = kwargs["override_categories"]
else:
self.override_categories = None
# original dataset
original_data_paths = {}
for k,v in self.original_data_dirs.items():
# categories override
if self.override_categories is not None:
if k not in self.override_categories:
continue
sequences = self._make_sequences(v)
samples = []
for seq in sequences:
samples += seq
if shuffle:
random.shuffle(samples)
original_data_paths.update({k: samples})
# few-shot dataset
enhance_back_view = kwargs['enhance_back_view']
if enhance_back_view:
enhance_back_view_path = kwargs['enhance_back_view_path']
few_shot_data_paths = {}
for k,v in self.few_shot_data_dirs.items():
# categories override
if self.override_categories is not None:
if k not in self.override_categories:
continue
if k.startswith('_'):
# a boundary here for dealing with when in new data, we have same categories as in 7-cat
v = v.replace(k, k[1:])
if isinstance(v, str):
result = sorted(glob(os.path.join(v, '*'+self.image_loaders[0][0])))
elif isinstance(v, list):
result = []
for _v in v:
result = result + sorted(glob(os.path.join(_v, '*'+self.image_loaders[0][0])))
else:
raise NotImplementedError
# result = sorted(glob(os.path.join(v, '*'+self.image_loaders[0][0])))
result = [p.replace(self.image_loaders[0][0], '{}') for p in result]
sequences = result
# the original 7 categories are using pre-defined paths to separate train and test
# here the few-shot we use is_validation to decide if this dataset is train or test
# if use enhanced back view, we first pad the multiplied back view image paths at the front of seq
# i.e., we don't use back view images for validation
if enhance_back_view:
back_view_dir = os.path.join(enhance_back_view_path, k, 'train')
back_view_result = sorted(glob(os.path.join(back_view_dir, '*'+self.image_loaders[0][0])))
back_view_result = [p.replace(self.image_loaders[0][0], '{}') for p in back_view_result]
mul_bv_sequences = self._more_back_views(back_view_result, result)
sequences = mul_bv_sequences + sequences
if is_validation:
# sequences = sequences[-2:]
sequences = sequences[-val_image_num:]
else:
# sequences = sequences[:-2]
sequences = sequences[:-val_image_num]
if shuffle:
random.shuffle(sequences)
few_shot_data_paths.update({k: sequences})
# for visualization purpose
self.pure_ori_data_path = original_data_paths
self.pure_fs_data_path = few_shot_data_paths
self.few_shot_data_length = self._get_data_length(few_shot_data_paths) # get the original length of each few-shot category
if disable_fewshot:
few_shot_data_paths = {}
self.dataset_split_num = dataset_split_num # if -1 then pad to longest, otherwise follow this number to pad and split
if is_validation:
self.dataset_split_num = -1 # validation we don't split dataset
if self.dataset_split_num == -1:
self.all_data_paths, self.one_category_num = self._pad_paths(original_data_paths, few_shot_data_paths)
self.all_category_num = len(self.all_data_paths.keys())
self.all_category_names = list(self.all_data_paths.keys())
self.original_category_names = list(self.original_data_dirs.keys())
elif self.dataset_split_num > 0:
self.all_data_paths, self.one_category_num, self.original_category_names = self._pad_paths_withnum(original_data_paths, few_shot_data_paths, self.dataset_split_num)
self.all_category_num = len(self.all_data_paths.keys())
self.all_category_names = list(self.all_data_paths.keys())
else:
raise NotImplementedError
self.in_image_size = in_image_size
self.out_image_size = out_image_size
self.load_background = load_background
self.color_jitter = color_jitter
self.image_transform = transforms.Compose([transforms.Resize(self.in_image_size), transforms.ToTensor()])
self.mask_transform = transforms.Compose([transforms.Resize(self.out_image_size, interpolation=Image.NEAREST), transforms.ToTensor()])
self.random_flip = random_flip
self.load_dino_feature = load_dino_feature
if load_dino_feature:
self.dino_feature_loaders = [(f"feat{dino_feature_dim}.png", dino_loader, dino_feature_dim)]
def _more_back_views(self, back_view_seq, seq):
if len(back_view_seq) == 0:
# for category without back views
return []
factor = 5
# length = (len(seq) // factor) * factor
length = (len(seq) // factor) * (factor - 1)
mul_f = length // len(back_view_seq)
pad_f = length % len(back_view_seq)
new_seq = mul_f * back_view_seq + back_view_seq[:pad_f]
return new_seq
def _get_data_length(self, paths):
data_length = {}
for k,v in paths.items():
length = len(v)
data_length.update({k: length})
return data_length
def _make_sequences(self, path):
result = []
for d in sorted(os.scandir(path), key=lambda e: e.name):
if d.is_dir():
files = self._parse_folder(d)
if len(files) >= 1:
result.append(files)
return result
def _parse_folder(self, path):
result = sorted(glob(os.path.join(path, '*'+self.image_loaders[0][0])))
result = [p.replace(self.image_loaders[0][0], '{}') for p in result]
if len(result) <= 0:
return []
return result
def _pad_paths(self, ori_paths, fs_paths):
img_nums = []
all_paths = copy.deepcopy(ori_paths)
all_paths.update(fs_paths)
for _, v in all_paths.items():
img_nums.append(len(v))
img_num = max(img_nums)
img_num = (img_num // self.batch_size) * self.batch_size
for k,v in all_paths.items():
if len(v) < img_num:
mul_time = img_num // len(v)
pad_time = img_num % len(v)
# for each v, shuffle it
shuffle_v = copy.deepcopy(v)
new_v = []
for i in range(mul_time):
new_v = new_v + shuffle_v
random.shuffle(shuffle_v)
del shuffle_v
new_v = new_v + v[0:pad_time]
# new_v = mul_time * v + v[0:pad_time]
all_paths[k] = new_v
elif len(v) > img_num:
all_paths[k] = v[:img_num]
else:
continue
return all_paths, img_num
def _pad_paths_withnum(self, ori_paths, fs_paths, split_num=1000):
img_num = (split_num // self.batch_size) * self.batch_size
all_paths = {}
orig_cat_names = []
for k, v in ori_paths.items():
total_num = ((len(v) // img_num) + 1) * img_num
pad_num = total_num - len(v)
split_num = total_num // img_num
new_v = copy.deepcopy(v)
random.shuffle(new_v)
all_v = v + new_v[:pad_num]
del new_v
for sn in range(split_num):
split_cat_name = f'{k}_' + '%03d' % sn
all_paths.update({
split_cat_name: all_v[sn*img_num: (sn+1)*img_num]
})
orig_cat_names.append(split_cat_name)
for k, v in fs_paths.items():
if len(v) < img_num:
mul_time = img_num // len(v)
pad_time = img_num % len(v)
# for each v, shuffle it
shuffle_v = copy.deepcopy(v)
new_v = []
for i in range(mul_time):
new_v = new_v + shuffle_v
random.shuffle(shuffle_v)
del shuffle_v
new_v = new_v + v[0:pad_time]
# new_v = mul_time * v + v[0:pad_time]
all_paths.update({
k: new_v
})
elif len(v) > img_num:
all_paths.update({
k: v[:img_num]
})
else:
continue
return all_paths, img_num, orig_cat_names
def _load_ids(self, path_patterns, loaders, transform=None):
result = []
for loader in loaders:
for p in path_patterns:
x = loader[1](p.format(loader[0]), *loader[2:])
if transform:
x = transform(x)
result.append(x)
return tuple(result)
def _shuffle_all(self):
for k,v in self.all_data_paths.items():
new_v = copy.deepcopy(v)
random.shuffle(new_v)
self.all_data_paths[k] = new_v
return None
def __len__(self):
return self.all_category_num * self.one_category_num
def __getitem__(self, index):
'''
This dataset must have non-shuffled index!!
'''
category_idx = (index % (self.batch_size * self.all_category_num)) // self.batch_size
path_idx = (index // (self.batch_size * self.all_category_num)) * self.batch_size + (index % (self.batch_size * self.all_category_num)) - category_idx * self.batch_size
category_name = self.all_category_names[category_idx]
paths = [self.all_data_paths[category_name][path_idx]] # len 1 sequence
if category_name in self.original_category_names:
bbox_loaders = self.original_bbox_loaders
use_original_bbox = True
else:
bbox_loaders = self.few_shot_bbox_loaders
use_original_bbox = False
masks = torch.stack(self._load_ids(paths, self.mask_loaders, transform=self.mask_transform), 0) # load all images
mask_dt = compute_distance_transform(masks)
jitter = False
if self.color_jitter is not None:
prob, b, h = self.color_jitter
if np.random.rand() < prob:
jitter = True
color_jitter_tsf_fg = transforms.ColorJitter.get_params(brightness=(1-b, 1+b), contrast=None, saturation=None, hue=(-h, h))
image_transform_fg = transforms.Compose([transforms.Resize(self.in_image_size), color_jitter_tsf_fg, transforms.ToTensor()])
color_jitter_tsf_bg = transforms.ColorJitter.get_params(brightness=(1-b, 1+b), contrast=None, saturation=None, hue=(-h, h))
image_transform_bg = transforms.Compose([transforms.Resize(self.in_image_size), color_jitter_tsf_bg, transforms.ToTensor()])
if jitter:
images_fg = torch.stack(self._load_ids(paths, self.image_loaders, transform=image_transform_fg), 0) # load all images
images_bg = torch.stack(self._load_ids(paths, self.image_loaders, transform=image_transform_bg), 0) # load all images
images = images_fg * masks + images_bg * (1-masks)
else:
images = torch.stack(self._load_ids(paths, self.image_loaders, transform=self.image_transform), 0) # load all images
flows = torch.zeros(1)
bboxs = torch.stack(self._load_ids(paths, bbox_loaders, transform=torch.FloatTensor), 0) # load bounding boxes for all images
if not use_original_bbox:
bboxs=torch.cat([bboxs, torch.Tensor([[category_idx]]).float()],dim=-1) # pad a label number
mask_valid = get_valid_mask(bboxs, (self.out_image_size, self.out_image_size)) # exclude pixels cropped outside the original image
if self.load_background:
bg_image = torchvision.datasets.folder.default_loader(os.path.join(os.path.dirname(paths[0]), 'background_frame.jpg'))
if jitter:
bg_image = color_jitter_tsf_bg(bg_image)
bg_images = crop_image(bg_image, bboxs[:, 1:5].int().numpy(), (self.in_image_size, self.in_image_size))
else:
bg_images = torch.zeros_like(images)
if self.load_dino_feature:
# print(paths)
new_dino_data_name = "data_dino_5000"
new_dino_data_path = os.path.join("/viscam/projects/articulated/dor/combine_all_data_for_ablation_magicpony", new_dino_data_name)
# TODO: use another version of DINO here by changing the path
if paths[0].startswith("/viscam/projects/articulated/dor/AnimalsMotionDataset/splitted_data/Combine_data/dinov2_new"):
# 7 cat data
new_dino_path = paths[0].replace(
"/viscam/projects/articulated/dor/AnimalsMotionDataset/splitted_data/Combine_data/dinov2_new",
"/viscam/projects/articulated/zzli/data_dino_5000/7_cat"
)
dino_paths = [new_dino_path]
elif paths[0].startswith("/viscam/u/zzli/workspace/Animal-Data-Engine/data/data_resize_update/few_shot_data_all"):
# 100 cat
dino_path = paths[0].replace(
"/viscam/u/zzli/workspace/Animal-Data-Engine/data/data_resize_update/few_shot_data_all",
os.path.join(new_dino_data_path, "100_cat")
)
dino_path_list = dino_path.split("/")
new_dino_path = dino_path_list[:-2] + dino_path_list[-1:] # remove "/train/"
new_dino_path = '/'.join(new_dino_path)
dino_paths = [new_dino_path]
elif paths[0].startswith("/viscam/projects/articulated/zzli/fs_data/data_resize_update/few_shot_data_all"):
# 100 cat
dino_path = paths[0].replace(
"/viscam/projects/articulated/zzli/fs_data/data_resize_update/few_shot_data_all",
os.path.join(new_dino_data_path, "100_cat")
)
dino_path_list = dino_path.split("/")
new_dino_path = dino_path_list[:-2] + dino_path_list[-1:] # remove "/train/"
new_dino_path = '/'.join(new_dino_path)
dino_paths = [new_dino_path]
elif paths[0].startswith("/viscam/u/zzli/workspace/Animal-Data-Engine/data/data_resize_update/segmented_back_view_data"):
# back 100 cat
dino_path = paths[0].replace(
"/viscam/u/zzli/workspace/Animal-Data-Engine/data/data_resize_update/segmented_back_view_data",
os.path.join(new_dino_data_path, "back_100_cat")
)
dino_path_list = dino_path.split("/")
new_dino_path = dino_path_list[:-2] + dino_path_list[-1:] # remove "/train/"
new_dino_path = '/'.join(new_dino_path)
dino_paths = [new_dino_path]
elif paths[0].startswith("/viscam/projects/articulated/dor/Animal-Data-Engine/data/data_resize_update/train_with_classes_filtered"):
# animal3d
dino_path = paths[0].replace(
"/viscam/projects/articulated/dor/Animal-Data-Engine/data/data_resize_update/train_with_classes_filtered",
os.path.join(new_dino_data_path, "animal3D")
)
dino_path_list = dino_path.split("/")
new_dino_path = dino_path_list[:-2] + dino_path_list[-1:] # remove "/train/"
new_dino_path = '/'.join(new_dino_path)
dino_paths = [new_dino_path]
else:
raise NotImplementedError
dino_features = torch.stack(self._load_ids(dino_paths, self.dino_feature_loaders, transform=torch.FloatTensor), 0)
# dino_features = torch.stack(self._load_ids(paths, self.dino_feature_loaders, transform=torch.FloatTensor), 0) # BxFx64x224x224
else:
dino_features = torch.zeros(1)
dino_clusters = torch.zeros(1)
# These are actually no use
seq_idx = 0
seq_idx = torch.LongTensor([seq_idx])
frame_idx = torch.arange(0, 1).long()
if self.random_flip and np.random.rand() < 0.5:
images, masks, mask_dt, mask_valid, flows, bboxs, bg_images, dino_features, dino_clusters = horizontal_flip_all(images, masks, mask_dt, mask_valid, flows, bboxs, bg_images, dino_features, dino_clusters)
## pad shorter sequence
if len(paths) < self.num_sample_frames:
num_pad = self.num_sample_frames - len(paths)
images = torch.cat([images[:1]] *num_pad + [images], 0)
masks = torch.cat([masks[:1]] *num_pad + [masks], 0)
mask_dt = torch.cat([mask_dt[:1]] *num_pad + [mask_dt], 0)
mask_valid = torch.cat([mask_valid[:1]] *num_pad + [mask_valid], 0)
if flows.dim() > 1:
flows = torch.cat([flows[:1]*0] *num_pad + [flows], 0)
bboxs = torch.cat([bboxs[:1]] * num_pad + [bboxs], 0)
bg_images = torch.cat([bg_images[:1]] *num_pad + [bg_images], 0)
if dino_features.dim() > 1:
dino_features = torch.cat([dino_features[:1]] *num_pad + [dino_features], 0)
if dino_clusters.dim() > 1:
dino_clusters = torch.cat([dino_clusters[:1]] *num_pad + [dino_clusters], 0)
frame_idx = torch.cat([frame_idx[:1]] *num_pad + [frame_idx], 0)
out = (*map(none_to_nan, (images, masks, mask_dt, mask_valid, flows, bboxs, bg_images, dino_features, dino_clusters, seq_idx, frame_idx, category_name)), )
return out
# return images, masks, mask_dt, mask_valid, flows, bboxs, bg_images, dino_features, dino_clusters, seq_idx, frame_idx, category_name
def get_sequence_loader_quadrupeds(original_data_dirs, few_shot_data_dirs, original_num, few_shot_num, rank, world_size, **kwargs):
dataset = Quadrupeds_Image_Dataset(original_data_dirs, few_shot_data_dirs, original_num, few_shot_num, **kwargs)
sampler = torch.utils.data.distributed.DistributedSampler(
dataset,
num_replicas=world_size,
rank=rank,
shuffle=False
)
loaders = []
loaders += [torch.utils.data.DataLoader(dataset, sampler=sampler, batch_size=kwargs['batch_size'], shuffle=False, drop_last=True, num_workers=kwargs['num_workers'], pin_memory=True)]
return loaders
class Quadrupeds_Image_Test_Dataset(Dataset):
def __init__(self, test_data_dirs, num_sample_frames=2, in_image_size=256, out_image_size=256, shuffle=False, color_jitter=None, load_background=False, random_flip=False, rgb_suffix='.png', load_dino_feature=False, dino_feature_dim=64, flow_bool=False, **kwargs):
self.few_shot_data_dirs = test_data_dirs
self.image_loaders = [("rgb"+rgb_suffix, torchvision.datasets.folder.default_loader)]
self.mask_loaders = [("mask.png", torchvision.datasets.folder.default_loader)]
self.original_bbox_loaders = [("box.txt", box_loader)]
self.few_shot_bbox_loaders = [("box.txt", few_shot_box_loader)]
self.num_sample_frames = num_sample_frames
self.batch_size = kwargs['batch_size'] # a hack way here
few_shot_data_paths = {}
for k,v in self.few_shot_data_dirs.items():
if k.startswith('_'):
# a boundary here for dealing with when in new data, we have same categories as in 7-cat
v = v.replace(k, k[1:])
if isinstance(v, str):
result = sorted(glob(os.path.join(v, '*'+self.image_loaders[0][0])))
elif isinstance(v, list):
result = []
for _v in v:
result = result + sorted(glob(os.path.join(_v, '*'+self.image_loaders[0][0])))
else:
raise NotImplementedError
# result = sorted(glob(os.path.join(v, '*'+self.image_loaders[0][0])))
result = [p.replace(self.image_loaders[0][0], '{}') for p in result]
sequences = result
if shuffle:
random.shuffle(sequences)
few_shot_data_paths.update({k: sequences})
# for visualization purpose
self.pure_fs_data_path = few_shot_data_paths
self.all_data_paths, self.one_category_num = self._pad_paths(few_shot_data_paths)
self.all_category_num = len(self.all_data_paths.keys())
self.all_category_names = list(self.all_data_paths.keys())
self.in_image_size = in_image_size
self.out_image_size = out_image_size
self.load_background = load_background
self.color_jitter = color_jitter
self.image_transform = transforms.Compose([transforms.Resize(self.in_image_size), transforms.ToTensor()])
self.mask_transform = transforms.Compose([transforms.Resize(self.out_image_size, interpolation=Image.NEAREST), transforms.ToTensor()])
self.random_flip = random_flip
self.load_dino_feature = load_dino_feature
if load_dino_feature:
self.dino_feature_loaders = [(f"feat{dino_feature_dim}.png", dino_loader, dino_feature_dim)]
def _pad_paths(self, fs_paths):
img_nums = []
all_paths = copy.deepcopy(fs_paths)
for _, v in all_paths.items():
img_nums.append(len(v))
img_num = max(img_nums)
img_num = (img_num // self.batch_size) * self.batch_size
for k,v in all_paths.items():
if len(v) < img_num:
mul_time = img_num // len(v)
pad_time = img_num % len(v)
# for each v, shuffle it
shuffle_v = copy.deepcopy(v)
new_v = []
for i in range(mul_time):
new_v = new_v + shuffle_v
random.shuffle(shuffle_v)
del shuffle_v
new_v = new_v + v[0:pad_time]
# new_v = mul_time * v + v[0:pad_time]
all_paths[k] = new_v
elif len(v) > img_num:
all_paths[k] = v[:img_num]
else:
continue
return all_paths, img_num
def _load_ids(self, path_patterns, loaders, transform=None):
result = []
for loader in loaders:
for p in path_patterns:
x = loader[1](p.format(loader[0]), *loader[2:])
if transform:
x = transform(x)
result.append(x)
return tuple(result)
def _shuffle_all(self):
for k,v in self.all_data_paths.items():
new_v = copy.deepcopy(v)
random.shuffle(new_v)
self.all_data_paths[k] = new_v
return None
def __len__(self):
return self.all_category_num * self.one_category_num
def __getitem__(self, index):
'''
This dataset must have non-shuffled index!!
'''
category_idx = (index % (self.batch_size * self.all_category_num)) // self.batch_size
path_idx = (index // (self.batch_size * self.all_category_num)) * self.batch_size + (index % (self.batch_size * self.all_category_num)) - category_idx * self.batch_size
category_name = self.all_category_names[category_idx]
paths = [self.all_data_paths[category_name][path_idx]] # len 1 sequence
# if category_name in self.original_category_names:
# bbox_loaders = self.original_bbox_loaders
# use_original_bbox = True
# else:
bbox_loaders = self.few_shot_bbox_loaders
use_original_bbox = False
masks = torch.stack(self._load_ids(paths, self.mask_loaders, transform=self.mask_transform), 0) # load all images
mask_dt = compute_distance_transform(masks)
jitter = False
if self.color_jitter is not None:
prob, b, h = self.color_jitter
if np.random.rand() < prob:
jitter = True
color_jitter_tsf_fg = transforms.ColorJitter.get_params(brightness=(1-b, 1+b), contrast=None, saturation=None, hue=(-h, h))
image_transform_fg = transforms.Compose([transforms.Resize(self.in_image_size), color_jitter_tsf_fg, transforms.ToTensor()])
color_jitter_tsf_bg = transforms.ColorJitter.get_params(brightness=(1-b, 1+b), contrast=None, saturation=None, hue=(-h, h))
image_transform_bg = transforms.Compose([transforms.Resize(self.in_image_size), color_jitter_tsf_bg, transforms.ToTensor()])
if jitter:
images_fg = torch.stack(self._load_ids(paths, self.image_loaders, transform=image_transform_fg), 0) # load all images
images_bg = torch.stack(self._load_ids(paths, self.image_loaders, transform=image_transform_bg), 0) # load all images
images = images_fg * masks + images_bg * (1-masks)
else:
images = torch.stack(self._load_ids(paths, self.image_loaders, transform=self.image_transform), 0) # load all images
flows = torch.zeros(1)
bboxs = torch.stack(self._load_ids(paths, bbox_loaders, transform=torch.FloatTensor), 0) # load bounding boxes for all images
if not use_original_bbox:
bboxs=torch.cat([bboxs, torch.Tensor([[category_idx]]).float()],dim=-1) # pad a label number
mask_valid = get_valid_mask(bboxs, (self.out_image_size, self.out_image_size)) # exclude pixels cropped outside the original image
if self.load_background:
bg_image = torchvision.datasets.folder.default_loader(os.path.join(os.path.dirname(paths[0]), 'background_frame.jpg'))
if jitter:
bg_image = color_jitter_tsf_bg(bg_image)
bg_images = crop_image(bg_image, bboxs[:, 1:5].int().numpy(), (self.in_image_size, self.in_image_size))
else:
bg_images = torch.zeros_like(images)
if self.load_dino_feature:
dino_features = torch.stack(self._load_ids(paths, self.dino_feature_loaders, transform=torch.FloatTensor), 0) # BxFx64x224x224
else:
dino_features = torch.zeros(1)
dino_clusters = torch.zeros(1)
# These are actually no use
seq_idx = 0
seq_idx = torch.LongTensor([seq_idx])
frame_idx = torch.arange(0, 1).long()
if self.random_flip and np.random.rand() < 0.5:
images, masks, mask_dt, mask_valid, flows, bboxs, bg_images, dino_features, dino_clusters = horizontal_flip_all(images, masks, mask_dt, mask_valid, flows, bboxs, bg_images, dino_features, dino_clusters)
## pad shorter sequence
if len(paths) < self.num_sample_frames:
num_pad = self.num_sample_frames - len(paths)
images = torch.cat([images[:1]] *num_pad + [images], 0)
masks = torch.cat([masks[:1]] *num_pad + [masks], 0)
mask_dt = torch.cat([mask_dt[:1]] *num_pad + [mask_dt], 0)
mask_valid = torch.cat([mask_valid[:1]] *num_pad + [mask_valid], 0)
if flows.dim() > 1:
flows = torch.cat([flows[:1]*0] *num_pad + [flows], 0)
bboxs = torch.cat([bboxs[:1]] * num_pad + [bboxs], 0)
bg_images = torch.cat([bg_images[:1]] *num_pad + [bg_images], 0)
if dino_features.dim() > 1:
dino_features = torch.cat([dino_features[:1]] *num_pad + [dino_features], 0)
if dino_clusters.dim() > 1:
dino_clusters = torch.cat([dino_clusters[:1]] *num_pad + [dino_clusters], 0)
frame_idx = torch.cat([frame_idx[:1]] *num_pad + [frame_idx], 0)
out = (*map(none_to_nan, (images, masks, mask_dt, mask_valid, flows, bboxs, bg_images, dino_features, dino_clusters, seq_idx, frame_idx, category_name)), )
return out
# return images, masks, mask_dt, mask_valid, flows, bboxs, bg_images, dino_features, dino_clusters, seq_idx, frame_idx, category_name
def get_test_loader_quadrupeds(test_data_dirs, rank, world_size, **kwargs):
dataset = Quadrupeds_Image_Test_Dataset(test_data_dirs, **kwargs)
sampler = torch.utils.data.distributed.DistributedSampler(
dataset,
num_replicas=world_size,
rank=rank,
shuffle=False
)
loaders = []
loaders += [torch.utils.data.DataLoader(dataset, sampler=sampler, batch_size=kwargs['batch_size'], shuffle=False, drop_last=True, num_workers=kwargs['num_workers'], pin_memory=True)]
return loaders
def get_sequence_loader(data_dir, **kwargs):
if isinstance(data_dir, dict):
loaders = []
for k, v in data_dir.items():
dataset= NFrameSequenceDataset(v, cat_name=k, **kwargs)
loader = torch.utils.data.DataLoader(dataset, batch_size=kwargs['batch_size'], shuffle=kwargs['shuffle'], num_workers=kwargs['num_workers'], pin_memory=True)
loaders += [loader]
return loaders
else:
return [get_sequence_loader_single(data_dir, **kwargs)]
def get_sequence_loader_single(data_dir, mode='all_frame', is_validation=False, batch_size=256, num_workers=4, in_image_size=256, out_image_size=256, debug_seq=False, num_sample_frames=2, skip_beginning=4, skip_end=4, min_seq_len=10, max_seq_len=256, random_sample=False, shuffle=False, dense_sample=True, color_jitter=None, load_background=False, random_flip=False, rgb_suffix='.jpg', load_dino_feature=False, load_dino_cluster=False, dino_feature_dim=64):
if mode == 'n_frame':
dataset = NFrameSequenceDataset(data_dir, num_sample_frames=num_sample_frames, skip_beginning=skip_beginning, skip_end=skip_end, min_seq_len=min_seq_len, in_image_size=in_image_size, out_image_size=out_image_size, debug_seq=debug_seq, random_sample=random_sample, shuffle=shuffle, dense_sample=dense_sample, color_jitter=color_jitter, load_background=load_background, random_flip=random_flip, rgb_suffix=rgb_suffix, load_dino_feature=load_dino_feature, load_dino_cluster=load_dino_cluster, dino_feature_dim=dino_feature_dim)
else:
raise NotImplementedError
loader = torch.utils.data.DataLoader(
dataset,
batch_size=batch_size,
shuffle=not is_validation,
num_workers=num_workers,
pin_memory=True
)
return loader
def get_sequence_loader_ddp(data_dir, world_size, rank, use_few_shot=False, **kwargs):
original_classes_num = 0
use_few_shot = use_few_shot
if isinstance(data_dir, list) and len(data_dir) == 2 and isinstance(data_dir[-1], dict):
# a hack way for few shot experiment
original_classes_num = data_dir[0]
data_dir = data_dir[-1]
if isinstance(data_dir, dict):
loaders = []
cnt = original_classes_num
for k, v in data_dir.items():
if use_few_shot:
dataset = FewShotImageDataset(v, cat_name=k, cat_num=cnt, **kwargs)
cnt += 1
else:
dataset = NFrameSequenceDataset(v, cat_name=k, **kwargs)
sampler = torch.utils.data.distributed.DistributedSampler(
dataset,
num_replicas=world_size,
rank=rank,
)
loaders += [torch.utils.data.DataLoader(dataset, sampler=sampler, batch_size=kwargs['batch_size'], shuffle=False, drop_last=True, num_workers=kwargs['num_workers'], pin_memory=True)]
return loaders
else:
return [get_sequence_loader_single_ddp(data_dir, world_size, rank, **kwargs)]
def get_sequence_loader_single_ddp(data_dir, world_size, rank, mode='all_frame', is_validation=False, batch_size=256, num_workers=4, in_image_size=256, out_image_size=256, debug_seq=False, num_sample_frames=2, skip_beginning=4, skip_end=4, min_seq_len=10, max_seq_len=256, random_sample=False, shuffle=False, dense_sample=True, color_jitter=None, load_background=False, random_flip=False, rgb_suffix='.jpg', load_dino_feature=False, load_dino_cluster=False, dino_feature_dim=64, flow_bool=False):
if mode == 'n_frame':
dataset = NFrameSequenceDataset(data_dir, num_sample_frames=num_sample_frames, skip_beginning=skip_beginning, skip_end=skip_end, min_seq_len=min_seq_len, in_image_size=in_image_size, out_image_size=out_image_size, debug_seq=debug_seq, random_sample=random_sample, shuffle=shuffle, dense_sample=dense_sample, color_jitter=color_jitter, load_background=load_background, random_flip=random_flip, rgb_suffix=rgb_suffix, load_dino_feature=load_dino_feature, load_dino_cluster=load_dino_cluster, dino_feature_dim=dino_feature_dim, flow_bool=flow_bool)
else:
raise NotImplementedError
sampler = torch.utils.data.distributed.DistributedSampler(
dataset,
num_replicas=world_size,
rank=rank,
)
loader = torch.utils.data.DataLoader(
dataset,
sampler=sampler,
batch_size=batch_size,
shuffle=False,
drop_last=True,
num_workers=num_workers,
pin_memory=True
)
return loader
class ImageDataset(Dataset):
def __init__(self, root, is_validation=False, image_size=256, color_jitter=None):
super().__init__()
self.image_loader = ("rgb.jpg", torchvision.datasets.folder.default_loader)
self.mask_loader = ("mask.png", torchvision.datasets.folder.default_loader)
self.bbox_loader = ("box.txt", np.loadtxt, 'str')
self.samples = self._parse_folder(root)
self.image_size = image_size
self.color_jitter = color_jitter
self.image_transform = transforms.Compose([transforms.Resize(self.image_size), transforms.ToTensor()])
self.mask_transform = transforms.Compose([transforms.Resize(self.image_size, interpolation=Image.NEAREST), transforms.ToTensor()])
def _parse_folder(self, path):
result = sorted(glob(os.path.join(path, '**/*'+self.image_loader[0]), recursive=True))
result = [p.replace(self.image_loader[0], '{}') for p in result]
return result
def _load_ids(self, path, loader, transform=None):
x = loader[1](path.format(loader[0]), *loader[2:])
if transform:
x = transform(x)
return x
def __len__(self):
return len(self.samples)
def __getitem__(self, index):
path = self.samples[index % len(self.samples)]
masks = self._load_ids(path, self.mask_loader, transform=self.mask_transform).unsqueeze(0)
mask_dt = compute_distance_transform(masks)
jitter = False
if self.color_jitter is not None:
prob, b, h = self.color_jitter
if np.random.rand() < prob:
jitter = True
color_jitter_tsf_fg = transforms.ColorJitter.get_params(brightness=(1-b, 1+b), contrast=None, saturation=None, hue=(-h, h))
image_transform_fg = transforms.Compose([transforms.Resize(self.image_size), color_jitter_tsf_fg, transforms.ToTensor()])
color_jitter_tsf_bg = transforms.ColorJitter.get_params(brightness=(1-b, 1+b), contrast=None, saturation=None, hue=(-h, h))
image_transform_bg = transforms.Compose([transforms.Resize(self.image_size), color_jitter_tsf_bg, transforms.ToTensor()])
if jitter:
images_fg = self._load_ids(path, self.image_loader, transform=image_transform_fg).unsqueeze(0)
images_bg = self._load_ids(path, self.image_loader, transform=image_transform_bg).unsqueeze(0)
images = images_fg * masks + images_bg * (1-masks)
else:
images = self._load_ids(path, self.image_loader, transform=self.image_transform).unsqueeze(0)
flows = torch.zeros(1)
bboxs = self._load_ids(path, self.bbox_loader, transform=None)
bboxs[0] = '0'
bboxs = torch.FloatTensor(bboxs.astype('float')).unsqueeze(0)
bg_fpath = os.path.join(os.path.dirname(path), 'background_frame.jpg')
if os.path.isfile(bg_fpath):
bg_image = torchvision.datasets.folder.default_loader(bg_fpath)
if jitter:
bg_image = color_jitter_tsf_bg(bg_image)
bg_image = transforms.ToTensor()(bg_image)
else:
bg_image = images[0]
seq_idx = torch.LongTensor([index])
frame_idx = torch.LongTensor([0])
return images, masks, mask_dt, flows, bboxs, bg_image, seq_idx, frame_idx
def get_image_loader(data_dir, is_validation=False, batch_size=256, num_workers=4, image_size=256, color_jitter=None):
dataset = ImageDataset(data_dir, is_validation=is_validation, image_size=image_size, color_jitter=color_jitter)
loader = torch.utils.data.DataLoader(
dataset,
batch_size=batch_size,
shuffle=False,
num_workers=num_workers,
pin_memory=True
)
return loader
def get_image_loader_ddp(data_dir, world_size, rank, is_validation=False, batch_size=256, num_workers=4, image_size=256, color_jitter=None):
dataset = ImageDataset(data_dir, is_validation=is_validation, image_size=image_size, color_jitter=color_jitter)
sampler = torch.utils.data.distributed.DistributedSampler(
dataset,
num_replicas=world_size,
rank=rank,
)
loader = torch.utils.data.DataLoader(
dataset,
sampler=sampler,
batch_size=batch_size,
shuffle=False,
drop_last=True,
num_workers=num_workers,
pin_memory=True
)
return loader
|