Spaces:
Running
Running
victormiller
commited on
Commit
•
25a9fcb
1
Parent(s):
c2f326c
Update curated.py
Browse files- curated.py +57 -39
curated.py
CHANGED
@@ -9,6 +9,57 @@ from rich import print
|
|
9 |
import uuid
|
10 |
import plotly.express as px
|
11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
filtering_process = Div(
|
13 |
Section(
|
14 |
P("This section contains the specific steps taken to filter all 14 curated source datasets.")
|
@@ -353,45 +404,11 @@ filtering_process = Div(
|
|
353 |
|
354 |
|
355 |
|
356 |
-
overview_text = P("Curated sources comprise high-quality datasets that contain domain-specificity. These sources, such as Arxiv, Wikipedia, and Stack Exchange, provide valuable data that is excluded from the web dataset mentioned above. Analyzing and processing non-web data can yield insights and opportunities for various applications. Details about each of the sources are provided below. ")
|
357 |
-
copyright_disclaimer = P("We respect the copyright of the data sources and have not included the controversial data that was used in Pile like YouTube and Opensubtitles, Reddit threads, and books.")
|
358 |
|
359 |
-
local_dedup_text = P("Each curated data source has been prepared using its specific rules and has been locally deduped using min-hash near deduplication. Details about the dataset are shown below in the table:")
|
360 |
|
361 |
-
|
362 |
-
'Source': ['ArXiv', 'PubMed Central', 'PubMed Abstract', 'S2ORC Full Text', 'S2ORC Abstract', 'PhilPapers', 'Wikipedia', 'StackExchange', 'EuroParl', 'Ubuntu IRC', 'Freelaw', 'PG19', 'USPTO', 'HackerNews', 'DM Maths'],
|
363 |
-
'Category': ['Papers', 'Papers', 'Papers', 'Papers', 'Papers', 'Papers', 'Internet', 'Conversational', 'Legal/Formal', 'Conversational', 'Legal/Formal', 'Books', 'Legal/Formal', 'Conversational', 'Reasoning'],
|
364 |
-
'Count': [100, 200, 150, 120, 80, 90, 300, 250, 180, 150, 150, 250, 180, 120, 90],
|
365 |
-
'Details': [
|
366 |
-
'A repository of scientific papers in various disciplines, including computer science, physics, mathematics, and more.',
|
367 |
-
'A database of biomedical and life sciences research articles.',
|
368 |
-
'Abstracts of biomedical literature from various sources.',
|
369 |
-
'Full-text articles from the Semantic Scholar Open Research Corpus.',
|
370 |
-
'Abstracts of articles from the Semantic Scholar Open Research Corpus.',
|
371 |
-
'Papers from the PhilPapers database, a comprehensive index and bibliography of philosophy research.',
|
372 |
-
'A collaborative online encyclopedia that covers a wide range of topics.',
|
373 |
-
'A network of question-and-answer websites on various subjects, including programming, science, mathematics, and more.',
|
374 |
-
'A collection of multilingual parallel corpora of parliamentary debates from the European Parliament.',
|
375 |
-
'Chat logs from the Ubuntu Internet Relay Chat (IRC) channels.',
|
376 |
-
'Legal documents and court cases from various jurisdictions.',
|
377 |
-
'A collection of books from Project Gutenberg, a digital library of public domain works.',
|
378 |
-
'Patent documents from the United States Patent and Trademark Office.',
|
379 |
-
'User-generated news and discussion platform focused on technology and startups.',
|
380 |
-
'Deep Mind Maths dataset with generated questions.'
|
381 |
-
]
|
382 |
-
}
|
383 |
-
# Calculate percentage for each data source
|
384 |
-
total_count = sum(treemap_data['Count'])
|
385 |
-
treemap_data['Percentage'] = [count / total_count * 100 for count in treemap_data['Count']]
|
386 |
-
|
387 |
-
# Create treemap
|
388 |
-
fig = px.treemap(treemap_data, path=['Category', 'Source'], values='Count', hover_data=['Details', 'Percentage'], hover_name='Source')
|
389 |
-
|
390 |
-
# Set the size of the chart
|
391 |
|
392 |
|
393 |
-
# Display treemap if you want to update the size.update_layout(width=800, height=600)
|
394 |
-
treemap_chart = fig
|
395 |
|
396 |
|
397 |
|
@@ -743,7 +760,7 @@ def curated(request):
|
|
743 |
or modules dedicated to the dataset.""")
|
744 |
|
745 |
data_preparation_div = Div(
|
746 |
-
|
747 |
text,
|
748 |
table_div,
|
749 |
Div(
|
@@ -812,17 +829,18 @@ def curated(request):
|
|
812 |
data_preprocessing_div = Div(H3("Data Preprocessing"), text, table_div)
|
813 |
|
814 |
return Div(
|
|
|
815 |
H2("Curated Sources: Overview"),
|
816 |
overview_text,
|
817 |
copyright_disclaimer,
|
818 |
plotly2fasthtml(treemap_chart),
|
|
|
819 |
table_desc,
|
|
|
|
|
820 |
H2("Curated Sources Processing"),
|
821 |
filtering_process,
|
822 |
data_preparation_div,
|
823 |
-
H3("Data Filtering"),
|
824 |
-
data_preprocessing_div,
|
825 |
-
plotly2fasthtml(get_chart_28168342()),
|
826 |
H2("Local Deduplication"),
|
827 |
local_dedup_text,
|
828 |
table_div_data_pipe,
|
|
|
9 |
import uuid
|
10 |
import plotly.express as px
|
11 |
|
12 |
+
|
13 |
+
overview = Div(
|
14 |
+
H2("Curated Source Processing Overview"),
|
15 |
+
H3("What This Section Contains"),
|
16 |
+
P("This section provides a complete discussion on the filtering applied to the 14 curated sources that comprise the non-web data section of TxT360. The section is split into the following topic areas: "),
|
17 |
+
Ul(
|
18 |
+
Li("Curated Sources Data Processing Summary", style = "margin-bottom: 5px"),
|
19 |
+
Li("Individual Filtering Discussion for Each Source", style = "margin-bottom: 5px"),
|
20 |
+
),
|
21 |
+
),
|
22 |
+
|
23 |
+
overview_text = P("Curated sources comprise high-quality datasets that contain domain-specificity. These sources, such as Arxiv, Wikipedia, and Stack Exchange, provide valuable data that is excluded from the web dataset mentioned above. Analyzing and processing non-web data can yield insights and opportunities for various applications. Details about each of the sources are provided below. ")
|
24 |
+
copyright_disclaimer = P("We respect the copyright of the data sources and have not included the controversial data that was used in Pile like YouTube and Opensubtitles, Reddit threads, and books.")
|
25 |
+
|
26 |
+
treemap_data = {
|
27 |
+
'Source': ['ArXiv', 'PubMed Central', 'PubMed Abstract', 'S2ORC Full Text', 'S2ORC Abstract', 'PhilPapers', 'Wikipedia', 'StackExchange', 'EuroParl', 'Ubuntu IRC', 'Freelaw', 'PG19', 'USPTO', 'HackerNews', 'DM Maths'],
|
28 |
+
'Category': ['Papers', 'Papers', 'Papers', 'Papers', 'Papers', 'Papers', 'Internet', 'Conversational', 'Legal/Formal', 'Conversational', 'Legal/Formal', 'Books', 'Legal/Formal', 'Conversational', 'Reasoning'],
|
29 |
+
'Count': [100, 200, 150, 120, 80, 90, 300, 250, 180, 150, 150, 250, 180, 120, 90],
|
30 |
+
'Details': [
|
31 |
+
'A repository of scientific papers in various disciplines, including computer science, physics, mathematics, and more.',
|
32 |
+
'A database of biomedical and life sciences research articles.',
|
33 |
+
'Abstracts of biomedical literature from various sources.',
|
34 |
+
'Full-text articles from the Semantic Scholar Open Research Corpus.',
|
35 |
+
'Abstracts of articles from the Semantic Scholar Open Research Corpus.',
|
36 |
+
'Papers from the PhilPapers database, a comprehensive index and bibliography of philosophy research.',
|
37 |
+
'A collaborative online encyclopedia that covers a wide range of topics.',
|
38 |
+
'A network of question-and-answer websites on various subjects, including programming, science, mathematics, and more.',
|
39 |
+
'A collection of multilingual parallel corpora of parliamentary debates from the European Parliament.',
|
40 |
+
'Chat logs from the Ubuntu Internet Relay Chat (IRC) channels.',
|
41 |
+
'Legal documents and court cases from various jurisdictions.',
|
42 |
+
'A collection of books from Project Gutenberg, a digital library of public domain works.',
|
43 |
+
'Patent documents from the United States Patent and Trademark Office.',
|
44 |
+
'User-generated news and discussion platform focused on technology and startups.',
|
45 |
+
'Deep Mind Maths dataset with generated questions.'
|
46 |
+
]
|
47 |
+
}
|
48 |
+
# Calculate percentage for each data source
|
49 |
+
total_count = sum(treemap_data['Count'])
|
50 |
+
treemap_data['Percentage'] = [count / total_count * 100 for count in treemap_data['Count']]
|
51 |
+
|
52 |
+
# Create treemap
|
53 |
+
fig = px.treemap(treemap_data, path=['Category', 'Source'], values='Count', hover_data=['Details', 'Percentage'], hover_name='Source')
|
54 |
+
|
55 |
+
# Set the size of the chart
|
56 |
+
|
57 |
+
|
58 |
+
# Display treemap if you want to update the size.update_layout(width=800, height=600)
|
59 |
+
treemap_chart = fig
|
60 |
+
|
61 |
+
|
62 |
+
|
63 |
filtering_process = Div(
|
64 |
Section(
|
65 |
P("This section contains the specific steps taken to filter all 14 curated source datasets.")
|
|
|
404 |
|
405 |
|
406 |
|
|
|
|
|
407 |
|
|
|
408 |
|
409 |
+
local_dedup_text = P("Each curated data source has been prepared using its specific rules and has been locally deduped using min-hash near deduplication. Details about the dataset are shown below in the table:")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
410 |
|
411 |
|
|
|
|
|
412 |
|
413 |
|
414 |
|
|
|
760 |
or modules dedicated to the dataset.""")
|
761 |
|
762 |
data_preparation_div = Div(
|
763 |
+
H2("Data Preparation"),
|
764 |
text,
|
765 |
table_div,
|
766 |
Div(
|
|
|
829 |
data_preprocessing_div = Div(H3("Data Preprocessing"), text, table_div)
|
830 |
|
831 |
return Div(
|
832 |
+
overview
|
833 |
H2("Curated Sources: Overview"),
|
834 |
overview_text,
|
835 |
copyright_disclaimer,
|
836 |
plotly2fasthtml(treemap_chart),
|
837 |
+
H2("Curated Sources Defined")
|
838 |
table_desc,
|
839 |
+
data_preprocessing_div,
|
840 |
+
plotly2fasthtml(get_chart_28168342()),
|
841 |
H2("Curated Sources Processing"),
|
842 |
filtering_process,
|
843 |
data_preparation_div,
|
|
|
|
|
|
|
844 |
H2("Local Deduplication"),
|
845 |
local_dedup_text,
|
846 |
table_div_data_pipe,
|