Update space
Browse files- app.py +7 -7
- src/populate.py +3 -2
app.py
CHANGED
@@ -105,8 +105,8 @@ def init_leaderboard(dataframe):
|
|
105 |
# model_result_path = "./src/results/models_2024-10-08-17:39:21.001582.jsonl"
|
106 |
# model_result_path = "./src/results/models_2024-10-09-05:17:38.810960.json"
|
107 |
# model_result_path = "./src/results/models_2024-10-09-06:22:21.122422.json"
|
108 |
-
|
109 |
-
model_result_path = "./src/results/models_2024-10-18-14:06:13.588399.json"
|
110 |
# model_leaderboard_df = get_model_leaderboard_df(model_result_path)
|
111 |
|
112 |
|
@@ -170,13 +170,13 @@ with demo:
|
|
170 |
# AutoEvalColumn.rank_overall.name,
|
171 |
AutoEvalColumn.model.name,
|
172 |
AutoEvalColumn.rank_overall.name,
|
173 |
-
|
174 |
-
|
175 |
AutoEvalColumn.rank_math_probability.name,
|
176 |
AutoEvalColumn.rank_reason_logical.name,
|
177 |
-
|
178 |
AutoEvalColumn.rank_chemistry.name,
|
179 |
-
|
180 |
],
|
181 |
rank_col=[],
|
182 |
)
|
@@ -265,7 +265,7 @@ with demo:
|
|
265 |
AutoEvalColumn.rank_math_probability.name,
|
266 |
AutoEvalColumn.model.name,
|
267 |
AutoEvalColumn.score_math_probability.name,
|
268 |
-
|
269 |
AutoEvalColumn.license.name,
|
270 |
AutoEvalColumn.organization.name,
|
271 |
AutoEvalColumn.knowledge_cutoff.name,
|
|
|
105 |
# model_result_path = "./src/results/models_2024-10-08-17:39:21.001582.jsonl"
|
106 |
# model_result_path = "./src/results/models_2024-10-09-05:17:38.810960.json"
|
107 |
# model_result_path = "./src/results/models_2024-10-09-06:22:21.122422.json"
|
108 |
+
model_result_path = "./src/results/models_2024-10-10-06:18:54.263527.json"
|
109 |
+
# model_result_path = "./src/results/models_2024-10-18-14:06:13.588399.json"
|
110 |
# model_leaderboard_df = get_model_leaderboard_df(model_result_path)
|
111 |
|
112 |
|
|
|
170 |
# AutoEvalColumn.rank_overall.name,
|
171 |
AutoEvalColumn.model.name,
|
172 |
AutoEvalColumn.rank_overall.name,
|
173 |
+
AutoEvalColumn.rank_math_algebra.name,
|
174 |
+
AutoEvalColumn.rank_math_geometry.name,
|
175 |
AutoEvalColumn.rank_math_probability.name,
|
176 |
AutoEvalColumn.rank_reason_logical.name,
|
177 |
+
AutoEvalColumn.rank_reason_social.name,
|
178 |
AutoEvalColumn.rank_chemistry.name,
|
179 |
+
AutoEvalColumn.rank_cpp.name,
|
180 |
],
|
181 |
rank_col=[],
|
182 |
)
|
|
|
265 |
AutoEvalColumn.rank_math_probability.name,
|
266 |
AutoEvalColumn.model.name,
|
267 |
AutoEvalColumn.score_math_probability.name,
|
268 |
+
AutoEvalColumn.sd_math_probability.name,
|
269 |
AutoEvalColumn.license.name,
|
270 |
AutoEvalColumn.organization.name,
|
271 |
AutoEvalColumn.knowledge_cutoff.name,
|
src/populate.py
CHANGED
@@ -19,7 +19,7 @@ def get_model_leaderboard_df(results_path: str, requests_path: str="", cols: lis
|
|
19 |
df = pd.DataFrame.from_records(all_data_json)
|
20 |
|
21 |
df = df[benchmark_cols]
|
22 |
-
print(df.head())
|
23 |
|
24 |
if rank_col: # if there is one col in rank_col, sort by that column and remove NaN values
|
25 |
df = df.dropna(subset=benchmark_cols)
|
@@ -48,7 +48,8 @@ def get_model_leaderboard_df(results_path: str, requests_path: str="", cols: lis
|
|
48 |
# df[col] = (df[col]).map('{:.2f}'.format)
|
49 |
# else:
|
50 |
# df[col] = (df[col]*100).map('{:.2f}'.format)
|
51 |
-
if "Chemistry" in col or "C++" in col
|
|
|
52 |
df[col] = (df[col]).map('{:.2f}'.format)
|
53 |
else:
|
54 |
df[col] = (df[col]*100).map('{:.2f}'.format)
|
|
|
19 |
df = pd.DataFrame.from_records(all_data_json)
|
20 |
|
21 |
df = df[benchmark_cols]
|
22 |
+
# print(df.head())
|
23 |
|
24 |
if rank_col: # if there is one col in rank_col, sort by that column and remove NaN values
|
25 |
df = df.dropna(subset=benchmark_cols)
|
|
|
48 |
# df[col] = (df[col]).map('{:.2f}'.format)
|
49 |
# else:
|
50 |
# df[col] = (df[col]*100).map('{:.2f}'.format)
|
51 |
+
if "Chemistry" in col or "C++" in col:
|
52 |
+
# if "Chemistry" in col or "C++" in col or "Overall" in col or "Probability" in col or "Logical" in col:
|
53 |
df[col] = (df[col]).map('{:.2f}'.format)
|
54 |
else:
|
55 |
df[col] = (df[col]*100).map('{:.2f}'.format)
|