yzabc007 commited on
Commit
92d7d3c
1 Parent(s): 04e5831

Update space

Browse files
Files changed (2) hide show
  1. app.py +7 -7
  2. src/populate.py +3 -2
app.py CHANGED
@@ -105,8 +105,8 @@ def init_leaderboard(dataframe):
105
  # model_result_path = "./src/results/models_2024-10-08-17:39:21.001582.jsonl"
106
  # model_result_path = "./src/results/models_2024-10-09-05:17:38.810960.json"
107
  # model_result_path = "./src/results/models_2024-10-09-06:22:21.122422.json"
108
- # model_result_path = "./src/results/models_2024-10-10-06:18:54.263527.json"
109
- model_result_path = "./src/results/models_2024-10-18-14:06:13.588399.json"
110
  # model_leaderboard_df = get_model_leaderboard_df(model_result_path)
111
 
112
 
@@ -170,13 +170,13 @@ with demo:
170
  # AutoEvalColumn.rank_overall.name,
171
  AutoEvalColumn.model.name,
172
  AutoEvalColumn.rank_overall.name,
173
- # AutoEvalColumn.rank_math_algebra.name,
174
- # AutoEvalColumn.rank_math_geometry.name,
175
  AutoEvalColumn.rank_math_probability.name,
176
  AutoEvalColumn.rank_reason_logical.name,
177
- # AutoEvalColumn.rank_reason_social.name,
178
  AutoEvalColumn.rank_chemistry.name,
179
- # AutoEvalColumn.rank_cpp.name,
180
  ],
181
  rank_col=[],
182
  )
@@ -265,7 +265,7 @@ with demo:
265
  AutoEvalColumn.rank_math_probability.name,
266
  AutoEvalColumn.model.name,
267
  AutoEvalColumn.score_math_probability.name,
268
- # AutoEvalColumn.sd_math_probability.name,
269
  AutoEvalColumn.license.name,
270
  AutoEvalColumn.organization.name,
271
  AutoEvalColumn.knowledge_cutoff.name,
 
105
  # model_result_path = "./src/results/models_2024-10-08-17:39:21.001582.jsonl"
106
  # model_result_path = "./src/results/models_2024-10-09-05:17:38.810960.json"
107
  # model_result_path = "./src/results/models_2024-10-09-06:22:21.122422.json"
108
+ model_result_path = "./src/results/models_2024-10-10-06:18:54.263527.json"
109
+ # model_result_path = "./src/results/models_2024-10-18-14:06:13.588399.json"
110
  # model_leaderboard_df = get_model_leaderboard_df(model_result_path)
111
 
112
 
 
170
  # AutoEvalColumn.rank_overall.name,
171
  AutoEvalColumn.model.name,
172
  AutoEvalColumn.rank_overall.name,
173
+ AutoEvalColumn.rank_math_algebra.name,
174
+ AutoEvalColumn.rank_math_geometry.name,
175
  AutoEvalColumn.rank_math_probability.name,
176
  AutoEvalColumn.rank_reason_logical.name,
177
+ AutoEvalColumn.rank_reason_social.name,
178
  AutoEvalColumn.rank_chemistry.name,
179
+ AutoEvalColumn.rank_cpp.name,
180
  ],
181
  rank_col=[],
182
  )
 
265
  AutoEvalColumn.rank_math_probability.name,
266
  AutoEvalColumn.model.name,
267
  AutoEvalColumn.score_math_probability.name,
268
+ AutoEvalColumn.sd_math_probability.name,
269
  AutoEvalColumn.license.name,
270
  AutoEvalColumn.organization.name,
271
  AutoEvalColumn.knowledge_cutoff.name,
src/populate.py CHANGED
@@ -19,7 +19,7 @@ def get_model_leaderboard_df(results_path: str, requests_path: str="", cols: lis
19
  df = pd.DataFrame.from_records(all_data_json)
20
 
21
  df = df[benchmark_cols]
22
- print(df.head())
23
 
24
  if rank_col: # if there is one col in rank_col, sort by that column and remove NaN values
25
  df = df.dropna(subset=benchmark_cols)
@@ -48,7 +48,8 @@ def get_model_leaderboard_df(results_path: str, requests_path: str="", cols: lis
48
  # df[col] = (df[col]).map('{:.2f}'.format)
49
  # else:
50
  # df[col] = (df[col]*100).map('{:.2f}'.format)
51
- if "Chemistry" in col or "C++" in col or "Overall" in col or "Probability" in col or "Logical" in col:
 
52
  df[col] = (df[col]).map('{:.2f}'.format)
53
  else:
54
  df[col] = (df[col]*100).map('{:.2f}'.format)
 
19
  df = pd.DataFrame.from_records(all_data_json)
20
 
21
  df = df[benchmark_cols]
22
+ # print(df.head())
23
 
24
  if rank_col: # if there is one col in rank_col, sort by that column and remove NaN values
25
  df = df.dropna(subset=benchmark_cols)
 
48
  # df[col] = (df[col]).map('{:.2f}'.format)
49
  # else:
50
  # df[col] = (df[col]*100).map('{:.2f}'.format)
51
+ if "Chemistry" in col or "C++" in col:
52
+ # if "Chemistry" in col or "C++" in col or "Overall" in col or "Probability" in col or "Logical" in col:
53
  df[col] = (df[col]).map('{:.2f}'.format)
54
  else:
55
  df[col] = (df[col]*100).map('{:.2f}'.format)