import gradio as gr import numpy as np import random import spaces import torch from diffusers import DiffusionPipeline, FlowMatchEulerDiscreteScheduler from transformers import CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5TokenizerFast from huggingface_hub import hf_hub_download import os dtype = torch.bfloat16 device = "cuda" if torch.cuda.is_available() else "cpu" MAX_SEED = np.iinfo(np.int32).max MAX_IMAGE_SIZE = 2048 # Initialize the pipeline globally pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16).to(device) @spaces.GPU(duration=300) def infer(prompt, seed=0, randomize_seed=True, width=1024, height=1024, guidance_scale=5.0, num_inference_steps=28, lora_model="davisbro/half_illustration", progress=gr.Progress(track_tqdm=True)): global pipe # Load LoRA if specified if lora_model: try: pipe.load_lora_weights(lora_model) except Exception as e: return None, seed, f"Failed to load LoRA model: {str(e)}" if randomize_seed: seed = random.randint(0, MAX_SEED) generator = torch.Generator().manual_seed(seed) try: image = pipe( prompt=prompt, width=width, height=height, num_inference_steps=num_inference_steps, generator=generator, guidance_scale=guidance_scale ).images[0] # Unload LoRA weights after generation if lora_model: pipe.unload_lora_weights() return image, seed, "Image generated successfully." except Exception as e: return None, seed, f"Error during image generation: {str(e)}" css = """ #col-container { margin: 0 auto; max-width: 520px; } """ with gr.Blocks(css=css) as demo: with gr.Column(elem_id="col-container"): gr.Markdown(f"""# FLUX.1 [dev] with half illustration lora """) with gr.Row(): prompt = gr.Text( label="Prompt", show_label=False, max_lines=1, placeholder="Enter your prompt", container=False, ) run_button = gr.Button("Run", scale=0) result = gr.Image(label="Result", show_label=False) output_message = gr.Textbox(label="Output Message") with gr.Accordion("Advanced Settings", open=False): seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, ) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) with gr.Row(): width = gr.Slider( label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024, ) height = gr.Slider( label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024, ) with gr.Row(): guidance_scale = gr.Slider( label="Guidance Scale", minimum=1, maximum=15, step=0.1, value=3.5, ) num_inference_steps = gr.Slider( label="Number of inference steps", minimum=1, maximum=50, step=1, value=28, ) gr.on( triggers=[run_button.click, prompt.submit], fn=infer, inputs=[prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps], outputs=[result, seed, output_message] ) demo.launch()