LampOfSocrates's picture
Updated app.py directlt on browser
30d04c6 verified
raw
history blame
2.57 kB
import streamlit as st
import wandb
from transformers import pipeline
from transformers import AutoTokenizer, AutoModelForTokenClassification
x = st.slider('Select a value')
st.write(x, 'squared is', x * x)
@st.cache_resource()
def load_trained_model():
tokenizer = AutoTokenizer.from_pretrained("LampOfSocrates/bert-base-cased-sourav")
model = AutoModelForTokenClassification.from_pretrained("LampOfSocrates/bert-base-cased-sourav")
# Mapping labels
label_map = model.config.id2label
# Print the label mapping
print(label_map)
# Load the NER model and tokenizer from Hugging Face
#ner_pipeline = pipeline("ner", model="dbmdz/bert-large-cased-finetuned-conll03-english")
ner_pipeline = pipeline("ner", model=model, tokenizer = tokenizer)
return ner_pipeline
def prep_page():
model = load_trained_model()
# Streamlit app
st.title("Named Entity Recognition with BERT on PLOD-CW")
st.write("Enter a sentence to see the named entities recognized by the model.")
# Text input
text = st.text_area("Enter your sentence here:")
# Perform NER and display results
if text:
st.write("Entities recognized:")
entities = model(text)
# Create a dictionary to map entity labels to colors
label_colors = {
'ORG': 'lightblue',
'PER': 'lightgreen',
'LOC': 'lightcoral',
'MISC': 'lightyellow'
}
# Prepare the HTML output with styled entities
def get_entity_html(text, entities):
html = ""
last_idx = 0
for entity in entities:
start = entity['start']
end = entity['end']
label = entity['entity']
entity_text = text[start:end]
color = label_colors.get(label, 'lightgray')
# Append the text before the entity
html += text[last_idx:start]
# Append the entity with styling
html += f'<mark style="background-color: {color}; border-radius: 3px;">{entity_text}</mark>'
last_idx = end
# Append any remaining text after the last entity
html += text[last_idx:]
return html
# Generate and display the styled HTML
styled_text = get_entity_html(text, entities)
st.markdown(styled_text, unsafe_allow_html=True)
if __name__ == '__main__':
models = load_model_from_wandb()
print(models)
prep_page()