Lamp Socrates commited on
Commit
c89a5c0
1 Parent(s): 9aa35b5
Files changed (1) hide show
  1. app.py +20 -12
app.py CHANGED
@@ -1,5 +1,4 @@
1
  import streamlit as st
2
- import wandb
3
  from transformers import pipeline
4
  from transformers import AutoTokenizer, AutoModelForTokenClassification
5
  import pandas as pd
@@ -33,12 +32,16 @@ def load_random_examples(dataset_name, num_examples=5):
33
  dataset = load_dataset("surrey-nlp/PLOD-CW")
34
 
35
  # Convert the dataset to a pandas DataFrame
36
- df = pd.DataFrame(dataset['train'])
37
 
38
  # Select random examples
39
- random_examples = df.sample(n=num_examples)
40
-
41
- return random_examples
 
 
 
 
42
 
43
  def render_entities(tokens, entities):
44
  """
@@ -65,15 +68,19 @@ def render_entities(tokens, entities):
65
  th {
66
  background-color: #4CAF50;
67
  color: white;
 
68
  }
69
  tr:hover {
70
  background-color: #f5f5f5;
71
  }
 
 
 
72
  </style>
73
  """, unsafe_allow_html=True)
74
 
75
  # Title and description
76
- st.title("Token Entities Table")
77
  st.write("This table shows the entity corresponding to each token in a cool and chilled theme.")
78
 
79
  # Create the table
@@ -85,8 +92,6 @@ def render_random_examples():
85
  Render random examples from the PLOD-CW dataset in a Streamlit table.
86
  """
87
  # Load random examples
88
- random_examples = load_random_examples("surrey-nlp/PLOD-CW")
89
-
90
 
91
  # Custom CSS for chilled and cool theme
92
  st.markdown("""
@@ -108,16 +113,20 @@ def render_random_examples():
108
  th {
109
  background-color: #4CAF50;
110
  color: white;
 
111
  }
112
  tr:hover {
113
  background-color: #f5f5f5;
114
  }
 
 
 
115
  </style>
116
  """, unsafe_allow_html=True)
117
 
118
  # Title and description
119
  st.title("Random Examples from PLOD-CW")
120
- st.write("This table shows 5 random examples from the PLOD-CW dataset in a cool and chilled theme.")
121
 
122
  # Add a button to select a different set of random samples
123
  if st.button('Show another set of random examples'):
@@ -130,13 +139,12 @@ def render_random_examples():
130
  # Display the table
131
  st.table(st.session_state['random_examples'])
132
 
133
-
134
  def prep_page():
135
  model = load_trained_model()
136
 
137
  # Streamlit app
138
  # Page configuration
139
- st.set_page_config(page_title="NER Token Entities", layout="centered")
140
 
141
  st.title("Named Entity Recognition with BERT on PLOD-CW")
142
  st.write("Enter a sentence to see the named entities recognized by the model.")
@@ -185,7 +193,7 @@ def prep_page():
185
 
186
  render_entities(text, entities)
187
 
188
- render_random_examples()
189
 
190
 
191
 
 
1
  import streamlit as st
 
2
  from transformers import pipeline
3
  from transformers import AutoTokenizer, AutoModelForTokenClassification
4
  import pandas as pd
 
32
  dataset = load_dataset("surrey-nlp/PLOD-CW")
33
 
34
  # Convert the dataset to a pandas DataFrame
35
+ df = pd.DataFrame(dataset['test'])
36
 
37
  # Select random examples
38
+ random_examples = df.sample(n=1)
39
+
40
+ tokens = random_examples.tokens
41
+ ner_tags = random_examples.ner_tags
42
+
43
+ return pd.DataFrame((tokens, ner_tags))
44
+
45
 
46
  def render_entities(tokens, entities):
47
  """
 
68
  th {
69
  background-color: #4CAF50;
70
  color: white;
71
+ width: 16.66%;
72
  }
73
  tr:hover {
74
  background-color: #f5f5f5;
75
  }
76
+ td {
77
+ width: 16.66%;
78
+ }
79
  </style>
80
  """, unsafe_allow_html=True)
81
 
82
  # Title and description
83
+ st.title("Model predicted Token vs Entities Table")
84
  st.write("This table shows the entity corresponding to each token in a cool and chilled theme.")
85
 
86
  # Create the table
 
92
  Render random examples from the PLOD-CW dataset in a Streamlit table.
93
  """
94
  # Load random examples
 
 
95
 
96
  # Custom CSS for chilled and cool theme
97
  st.markdown("""
 
113
  th {
114
  background-color: #4CAF50;
115
  color: white;
116
+ width: 16.66%;
117
  }
118
  tr:hover {
119
  background-color: #f5f5f5;
120
  }
121
+ td {
122
+ width: 16.66%;
123
+ }
124
  </style>
125
  """, unsafe_allow_html=True)
126
 
127
  # Title and description
128
  st.title("Random Examples from PLOD-CW")
129
+ st.write("This table shows 1 random examples from the PLOD-CW dataset in a cool and chilled theme.")
130
 
131
  # Add a button to select a different set of random samples
132
  if st.button('Show another set of random examples'):
 
139
  # Display the table
140
  st.table(st.session_state['random_examples'])
141
 
 
142
  def prep_page():
143
  model = load_trained_model()
144
 
145
  # Streamlit app
146
  # Page configuration
147
+ #st.set_page_config(page_title="NER Token Entities", layout="centered")
148
 
149
  st.title("Named Entity Recognition with BERT on PLOD-CW")
150
  st.write("Enter a sentence to see the named entities recognized by the model.")
 
193
 
194
  render_entities(text, entities)
195
 
196
+ render_random_examples()
197
 
198
 
199