Langelaw commited on
Commit
73d5760
1 Parent(s): aa43472

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -33,3 +33,11 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ logs/0d6e37451ce97b5e97dd74e63f9a06b17644f2ad02f32534ce079493808d288f.glb filter=lfs diff=lfs merge=lfs -text
37
+ logs/_tmp_gradio_312f2981ccbecf05b94e9729c5e88e720cafa46c_1e5133dcc83642c805644360a403f7c38a9dffc7f860cb96a678c76708d997c0.glb filter=lfs diff=lfs merge=lfs -text
38
+ logs/_tmp_gradio_6a883f05b5f52ebd382b11a3aef0825b272d0837_2f78ca4365556592bd54881407d40b3928870cfa6d89ec389b65356b3759c96c.glb filter=lfs diff=lfs merge=lfs -text
39
+ logs/tiger_rgba.glb filter=lfs diff=lfs merge=lfs -text
40
+ src/demo/logs/0d6e37451ce97b5e97dd74e63f9a06b17644f2ad02f32534ce079493808d288f.glb filter=lfs diff=lfs merge=lfs -text
41
+ src/demo/logs/_tmp_gradio_312f2981ccbecf05b94e9729c5e88e720cafa46c_1e5133dcc83642c805644360a403f7c38a9dffc7f860cb96a678c76708d997c0.glb filter=lfs diff=lfs merge=lfs -text
42
+ src/demo/logs/_tmp_gradio_6a883f05b5f52ebd382b11a3aef0825b272d0837_2f78ca4365556592bd54881407d40b3928870cfa6d89ec389b65356b3759c96c.glb filter=lfs diff=lfs merge=lfs -text
43
+ src/demo/logs/tiger_rgba.glb filter=lfs diff=lfs merge=lfs -text
README.md CHANGED
@@ -26,17 +26,73 @@ pip install gradio_model4dgs
26
  import gradio as gr
27
  from gradio_model4dgs import Model4DGS
28
  import os
 
 
29
 
30
- image_dir = os.path.join(os.path.dirname(__file__), "assets")
 
 
31
 
32
- if os.path.exists(image_dir) and os.path.isdir(image_dir) and os.listdir(image_dir):
33
- examples = [os.path.join(image_dir, file) for file in os.listdir(image_dir)]
34
- else:
35
- examples = [os.path.join(os.path.dirname(__file__), example) for example in Model4DGS().example_inputs()]
36
-
37
- with gr.Blocks() as demo:
38
- with gr.Row():
39
- Model4DGS(value=examples, label="4D Model")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
40
 
41
  if __name__ == "__main__":
42
  demo.launch(share=True)
 
26
  import gradio as gr
27
  from gradio_model4dgs import Model4DGS
28
  import os
29
+ from PIL import Image
30
+ import hashlib
31
 
32
+ def check_img_input(control_image):
33
+ if control_image is None:
34
+ raise gr.Error("Please select or upload an input image")
35
 
36
+ if __name__ == "__main__":
37
+ _TITLE = '''DreamGaussian: Generative Gaussian Splatting for Efficient 3D Content Creation'''
38
+
39
+ _DESCRIPTION = '''
40
+ <div>
41
+ <a style="display:inline-block" href="https://jiawei-ren.github.io/projects/dreamgaussian4d/"><img src='https://img.shields.io/badge/public_website-8A2BE2'></a>
42
+ <a style="display:inline-block; margin-left: .5em" href="https://arxiv.org/abs/2312.17142"><img src="https://img.shields.io/badge/2309.16653-f9f7f7?logo="></a>
43
+ <a style="display:inline-block; margin-left: .5em" href='https://github.com/jiawei-ren/dreamgaussian4d'><img src='https://img.shields.io/github/stars/jiawei-ren/dreamgaussian4d?style=social'/></a>
44
+ </div>
45
+ We introduce DreamGaussian4D, an efficient 4D generation framework that builds on 4D Gaussian Splatting representation.
46
+ '''
47
+
48
+ # load images in 'assets' folder as examples
49
+ image_dir = os.path.join(os.path.dirname(__file__), "assets")
50
+ examples_img = None
51
+
52
+ if os.path.exists(image_dir) and os.path.isdir(image_dir) and os.listdir(image_dir):
53
+ examples_4d = [os.path.join(image_dir, file) for file in os.listdir(image_dir) if file.endswith('.ply')]
54
+ examples_img = [os.path.join(image_dir, file) for file in os.listdir(image_dir) if file.endswith('.png')]
55
+ else:
56
+ examples_4d = [os.path.join(os.path.dirname(__file__), example) for example in Model4DGS().example_inputs()]
57
+
58
+ def optimize(image_block: Image.Image):
59
+ # temporarily only show tiger
60
+ return f'{os.path.join(os.path.dirname(__file__), "logs")}/tiger.glb', examples_4d
61
+
62
+ # Compose demo layout & data flow
63
+ with gr.Blocks(title=_TITLE, theme=gr.themes.Soft()) as demo:
64
+ with gr.Row():
65
+ with gr.Column(scale=1):
66
+ gr.Markdown('# ' + _TITLE)
67
+ gr.Markdown(_DESCRIPTION)
68
+
69
+ with gr.Row(variant='panel'):
70
+ left_column = gr.Column(scale=5)
71
+ with left_column:
72
+ image_block = gr.Image(type='pil', image_mode='RGBA', height=290, label='Input image')
73
+
74
+ preprocess_chk = gr.Checkbox(True,
75
+ label='Preprocess image automatically (remove background and recenter object)')
76
+
77
+ with gr.Column(scale=5):
78
+ obj3d = gr.Model3D(clear_color=[0.0, 0.0, 0.0, 0.0], label="3D Model (Final)")
79
+ obj4d = Model4DGS(label="4D Model")
80
+
81
+ with left_column:
82
+ gr.Examples(
83
+ examples=examples_img, # NOTE: elements must match inputs list!
84
+ inputs=image_block,
85
+ outputs=obj3d,
86
+ fn=optimize,
87
+ label='Examples (click one of the images below to start)',
88
+ examples_per_page=40
89
+ )
90
+ img_run_btn = gr.Button("Generate 4D")
91
+
92
+ # if there is an input image, continue with inference
93
+ # else display an error message
94
+ img_run_btn.click(check_img_input, inputs=[image_block], queue=False).success(
95
+ optimize, inputs=[image_block], outputs=[obj3d, obj4d])
96
 
97
  if __name__ == "__main__":
98
  demo.launch(share=True)
app.py CHANGED
@@ -1,17 +1,73 @@
1
  import gradio as gr
2
  from gradio_model4dgs import Model4DGS
3
  import os
 
 
4
 
5
- image_dir = os.path.join(os.path.dirname(__file__), "assets")
 
 
6
 
7
- if os.path.exists(image_dir) and os.path.isdir(image_dir) and os.listdir(image_dir):
8
- examples = [os.path.join(image_dir, file) for file in os.listdir(image_dir)]
9
- else:
10
- examples = [os.path.join(os.path.dirname(__file__), example) for example in Model4DGS().example_inputs()]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11
 
12
- with gr.Blocks() as demo:
13
- with gr.Row():
14
- Model4DGS(value=examples, label="4D Model")
 
15
 
16
  if __name__ == "__main__":
17
  demo.launch(share=True)
 
1
  import gradio as gr
2
  from gradio_model4dgs import Model4DGS
3
  import os
4
+ from PIL import Image
5
+ import hashlib
6
 
7
+ def check_img_input(control_image):
8
+ if control_image is None:
9
+ raise gr.Error("Please select or upload an input image")
10
 
11
+ if __name__ == "__main__":
12
+ _TITLE = '''DreamGaussian: Generative Gaussian Splatting for Efficient 3D Content Creation'''
13
+
14
+ _DESCRIPTION = '''
15
+ <div>
16
+ <a style="display:inline-block" href="https://jiawei-ren.github.io/projects/dreamgaussian4d/"><img src='https://img.shields.io/badge/public_website-8A2BE2'></a>
17
+ <a style="display:inline-block; margin-left: .5em" href="https://arxiv.org/abs/2312.17142"><img src="https://img.shields.io/badge/2309.16653-f9f7f7?logo="></a>
18
+ <a style="display:inline-block; margin-left: .5em" href='https://github.com/jiawei-ren/dreamgaussian4d'><img src='https://img.shields.io/github/stars/jiawei-ren/dreamgaussian4d?style=social'/></a>
19
+ </div>
20
+ We introduce DreamGaussian4D, an efficient 4D generation framework that builds on 4D Gaussian Splatting representation.
21
+ '''
22
+
23
+ # load images in 'assets' folder as examples
24
+ image_dir = os.path.join(os.path.dirname(__file__), "assets")
25
+ examples_img = None
26
+
27
+ if os.path.exists(image_dir) and os.path.isdir(image_dir) and os.listdir(image_dir):
28
+ examples_4d = [os.path.join(image_dir, file) for file in os.listdir(image_dir) if file.endswith('.ply')]
29
+ examples_img = [os.path.join(image_dir, file) for file in os.listdir(image_dir) if file.endswith('.png')]
30
+ else:
31
+ examples_4d = [os.path.join(os.path.dirname(__file__), example) for example in Model4DGS().example_inputs()]
32
+
33
+ def optimize(image_block: Image.Image):
34
+ # temporarily only show tiger
35
+ return f'{os.path.join(os.path.dirname(__file__), "logs")}/tiger.glb', examples_4d
36
+
37
+ # Compose demo layout & data flow
38
+ with gr.Blocks(title=_TITLE, theme=gr.themes.Soft()) as demo:
39
+ with gr.Row():
40
+ with gr.Column(scale=1):
41
+ gr.Markdown('# ' + _TITLE)
42
+ gr.Markdown(_DESCRIPTION)
43
+
44
+ with gr.Row(variant='panel'):
45
+ left_column = gr.Column(scale=5)
46
+ with left_column:
47
+ image_block = gr.Image(type='pil', image_mode='RGBA', height=290, label='Input image')
48
+
49
+ preprocess_chk = gr.Checkbox(True,
50
+ label='Preprocess image automatically (remove background and recenter object)')
51
+
52
+ with gr.Column(scale=5):
53
+ obj3d = gr.Model3D(clear_color=[0.0, 0.0, 0.0, 0.0], label="3D Model (Final)")
54
+ obj4d = Model4DGS(label="4D Model")
55
+
56
+ with left_column:
57
+ gr.Examples(
58
+ examples=examples_img, # NOTE: elements must match inputs list!
59
+ inputs=image_block,
60
+ outputs=obj3d,
61
+ fn=optimize,
62
+ label='Examples (click one of the images below to start)',
63
+ examples_per_page=40
64
+ )
65
+ img_run_btn = gr.Button("Generate 4D")
66
 
67
+ # if there is an input image, continue with inference
68
+ # else display an error message
69
+ img_run_btn.click(check_img_input, inputs=[image_block], queue=False).success(
70
+ optimize, inputs=[image_block], outputs=[obj3d, obj4d])
71
 
72
  if __name__ == "__main__":
73
  demo.launch(share=True)
assets/anya_rgba.png ADDED
assets/fox_rgba.png ADDED
assets/monkey_rgba.png ADDED
assets/tiger_rgba.png ADDED
logs/0d6e37451ce97b5e97dd74e63f9a06b17644f2ad02f32534ce079493808d288f.glb ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:36c0b461d6973a61b97cfdcffb49c1e6e2ac2730cda3da2a53ca18eb1300c21d
3
+ size 2101240
logs/_tmp_gradio_312f2981ccbecf05b94e9729c5e88e720cafa46c_1e5133dcc83642c805644360a403f7c38a9dffc7f860cb96a678c76708d997c0.glb ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3f898caa81d1c4eebae1bd8a3dd0581fd787290abc7c174051c0ab0366bb231f
3
+ size 2614792
logs/_tmp_gradio_6a883f05b5f52ebd382b11a3aef0825b272d0837_2f78ca4365556592bd54881407d40b3928870cfa6d89ec389b65356b3759c96c.glb ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3f4b8d60a1208343c984b7bb129efb0a175b7f7dddd737e98e0302f4931f6dda
3
+ size 2711984
logs/tiger_rgba.glb ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3f898caa81d1c4eebae1bd8a3dd0581fd787290abc7c174051c0ab0366bb231f
3
+ size 2614792
space.py CHANGED
@@ -41,17 +41,73 @@ pip install gradio_model4dgs
41
  import gradio as gr
42
  from gradio_model4dgs import Model4DGS
43
  import os
 
 
44
 
45
- image_dir = os.path.join(os.path.dirname(__file__), "assets")
 
 
46
 
47
- if os.path.exists(image_dir) and os.path.isdir(image_dir) and os.listdir(image_dir):
48
- examples = [os.path.join(image_dir, file) for file in os.listdir(image_dir)]
49
- else:
50
- examples = [os.path.join(os.path.dirname(__file__), example) for example in Model4DGS().example_inputs()]
51
-
52
- with gr.Blocks() as demo:
53
- with gr.Row():
54
- Model4DGS(value=examples, label="4D Model")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55
 
56
  if __name__ == "__main__":
57
  demo.launch(share=True)
 
41
  import gradio as gr
42
  from gradio_model4dgs import Model4DGS
43
  import os
44
+ from PIL import Image
45
+ import hashlib
46
 
47
+ def check_img_input(control_image):
48
+ if control_image is None:
49
+ raise gr.Error("Please select or upload an input image")
50
 
51
+ if __name__ == "__main__":
52
+ _TITLE = '''DreamGaussian: Generative Gaussian Splatting for Efficient 3D Content Creation'''
53
+
54
+ _DESCRIPTION = '''
55
+ <div>
56
+ <a style="display:inline-block" href="https://jiawei-ren.github.io/projects/dreamgaussian4d/"><img src='https://img.shields.io/badge/public_website-8A2BE2'></a>
57
+ <a style="display:inline-block; margin-left: .5em" href="https://arxiv.org/abs/2312.17142"><img src="https://img.shields.io/badge/2309.16653-f9f7f7?logo="></a>
58
+ <a style="display:inline-block; margin-left: .5em" href='https://github.com/jiawei-ren/dreamgaussian4d'><img src='https://img.shields.io/github/stars/jiawei-ren/dreamgaussian4d?style=social'/></a>
59
+ </div>
60
+ We introduce DreamGaussian4D, an efficient 4D generation framework that builds on 4D Gaussian Splatting representation.
61
+ '''
62
+
63
+ # load images in 'assets' folder as examples
64
+ image_dir = os.path.join(os.path.dirname(__file__), "assets")
65
+ examples_img = None
66
+
67
+ if os.path.exists(image_dir) and os.path.isdir(image_dir) and os.listdir(image_dir):
68
+ examples_4d = [os.path.join(image_dir, file) for file in os.listdir(image_dir) if file.endswith('.ply')]
69
+ examples_img = [os.path.join(image_dir, file) for file in os.listdir(image_dir) if file.endswith('.png')]
70
+ else:
71
+ examples_4d = [os.path.join(os.path.dirname(__file__), example) for example in Model4DGS().example_inputs()]
72
+
73
+ def optimize(image_block: Image.Image):
74
+ # temporarily only show tiger
75
+ return f'{os.path.join(os.path.dirname(__file__), "logs")}/tiger.glb', examples_4d
76
+
77
+ # Compose demo layout & data flow
78
+ with gr.Blocks(title=_TITLE, theme=gr.themes.Soft()) as demo:
79
+ with gr.Row():
80
+ with gr.Column(scale=1):
81
+ gr.Markdown('# ' + _TITLE)
82
+ gr.Markdown(_DESCRIPTION)
83
+
84
+ with gr.Row(variant='panel'):
85
+ left_column = gr.Column(scale=5)
86
+ with left_column:
87
+ image_block = gr.Image(type='pil', image_mode='RGBA', height=290, label='Input image')
88
+
89
+ preprocess_chk = gr.Checkbox(True,
90
+ label='Preprocess image automatically (remove background and recenter object)')
91
+
92
+ with gr.Column(scale=5):
93
+ obj3d = gr.Model3D(clear_color=[0.0, 0.0, 0.0, 0.0], label="3D Model (Final)")
94
+ obj4d = Model4DGS(label="4D Model")
95
+
96
+ with left_column:
97
+ gr.Examples(
98
+ examples=examples_img, # NOTE: elements must match inputs list!
99
+ inputs=image_block,
100
+ outputs=obj3d,
101
+ fn=optimize,
102
+ label='Examples (click one of the images below to start)',
103
+ examples_per_page=40
104
+ )
105
+ img_run_btn = gr.Button("Generate 4D")
106
+
107
+ # if there is an input image, continue with inference
108
+ # else display an error message
109
+ img_run_btn.click(check_img_input, inputs=[image_block], queue=False).success(
110
+ optimize, inputs=[image_block], outputs=[obj3d, obj4d])
111
 
112
  if __name__ == "__main__":
113
  demo.launch(share=True)
src/README.md CHANGED
@@ -26,17 +26,73 @@ pip install gradio_model4dgs
26
  import gradio as gr
27
  from gradio_model4dgs import Model4DGS
28
  import os
 
 
29
 
30
- image_dir = os.path.join(os.path.dirname(__file__), "assets")
 
 
31
 
32
- if os.path.exists(image_dir) and os.path.isdir(image_dir) and os.listdir(image_dir):
33
- examples = [os.path.join(image_dir, file) for file in os.listdir(image_dir)]
34
- else:
35
- examples = [os.path.join(os.path.dirname(__file__), example) for example in Model4DGS().example_inputs()]
36
-
37
- with gr.Blocks() as demo:
38
- with gr.Row():
39
- Model4DGS(value=examples, label="4D Model")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
40
 
41
  if __name__ == "__main__":
42
  demo.launch(share=True)
 
26
  import gradio as gr
27
  from gradio_model4dgs import Model4DGS
28
  import os
29
+ from PIL import Image
30
+ import hashlib
31
 
32
+ def check_img_input(control_image):
33
+ if control_image is None:
34
+ raise gr.Error("Please select or upload an input image")
35
 
36
+ if __name__ == "__main__":
37
+ _TITLE = '''DreamGaussian: Generative Gaussian Splatting for Efficient 3D Content Creation'''
38
+
39
+ _DESCRIPTION = '''
40
+ <div>
41
+ <a style="display:inline-block" href="https://jiawei-ren.github.io/projects/dreamgaussian4d/"><img src='https://img.shields.io/badge/public_website-8A2BE2'></a>
42
+ <a style="display:inline-block; margin-left: .5em" href="https://arxiv.org/abs/2312.17142"><img src="https://img.shields.io/badge/2309.16653-f9f7f7?logo="></a>
43
+ <a style="display:inline-block; margin-left: .5em" href='https://github.com/jiawei-ren/dreamgaussian4d'><img src='https://img.shields.io/github/stars/jiawei-ren/dreamgaussian4d?style=social'/></a>
44
+ </div>
45
+ We introduce DreamGaussian4D, an efficient 4D generation framework that builds on 4D Gaussian Splatting representation.
46
+ '''
47
+
48
+ # load images in 'assets' folder as examples
49
+ image_dir = os.path.join(os.path.dirname(__file__), "assets")
50
+ examples_img = None
51
+
52
+ if os.path.exists(image_dir) and os.path.isdir(image_dir) and os.listdir(image_dir):
53
+ examples_4d = [os.path.join(image_dir, file) for file in os.listdir(image_dir) if file.endswith('.ply')]
54
+ examples_img = [os.path.join(image_dir, file) for file in os.listdir(image_dir) if file.endswith('.png')]
55
+ else:
56
+ examples_4d = [os.path.join(os.path.dirname(__file__), example) for example in Model4DGS().example_inputs()]
57
+
58
+ def optimize(image_block: Image.Image):
59
+ # temporarily only show tiger
60
+ return f'{os.path.join(os.path.dirname(__file__), "logs")}/tiger.glb', examples_4d
61
+
62
+ # Compose demo layout & data flow
63
+ with gr.Blocks(title=_TITLE, theme=gr.themes.Soft()) as demo:
64
+ with gr.Row():
65
+ with gr.Column(scale=1):
66
+ gr.Markdown('# ' + _TITLE)
67
+ gr.Markdown(_DESCRIPTION)
68
+
69
+ with gr.Row(variant='panel'):
70
+ left_column = gr.Column(scale=5)
71
+ with left_column:
72
+ image_block = gr.Image(type='pil', image_mode='RGBA', height=290, label='Input image')
73
+
74
+ preprocess_chk = gr.Checkbox(True,
75
+ label='Preprocess image automatically (remove background and recenter object)')
76
+
77
+ with gr.Column(scale=5):
78
+ obj3d = gr.Model3D(clear_color=[0.0, 0.0, 0.0, 0.0], label="3D Model (Final)")
79
+ obj4d = Model4DGS(label="4D Model")
80
+
81
+ with left_column:
82
+ gr.Examples(
83
+ examples=examples_img, # NOTE: elements must match inputs list!
84
+ inputs=image_block,
85
+ outputs=obj3d,
86
+ fn=optimize,
87
+ label='Examples (click one of the images below to start)',
88
+ examples_per_page=40
89
+ )
90
+ img_run_btn = gr.Button("Generate 4D")
91
+
92
+ # if there is an input image, continue with inference
93
+ # else display an error message
94
+ img_run_btn.click(check_img_input, inputs=[image_block], queue=False).success(
95
+ optimize, inputs=[image_block], outputs=[obj3d, obj4d])
96
 
97
  if __name__ == "__main__":
98
  demo.launch(share=True)
src/demo/app.py CHANGED
@@ -1,17 +1,73 @@
1
  import gradio as gr
2
  from gradio_model4dgs import Model4DGS
3
  import os
 
 
4
 
5
- image_dir = os.path.join(os.path.dirname(__file__), "assets")
 
 
6
 
7
- if os.path.exists(image_dir) and os.path.isdir(image_dir) and os.listdir(image_dir):
8
- examples = [os.path.join(image_dir, file) for file in os.listdir(image_dir)]
9
- else:
10
- examples = [os.path.join(os.path.dirname(__file__), example) for example in Model4DGS().example_inputs()]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11
 
12
- with gr.Blocks() as demo:
13
- with gr.Row():
14
- Model4DGS(value=examples, label="4D Model")
 
15
 
16
  if __name__ == "__main__":
17
  demo.launch(share=True)
 
1
  import gradio as gr
2
  from gradio_model4dgs import Model4DGS
3
  import os
4
+ from PIL import Image
5
+ import hashlib
6
 
7
+ def check_img_input(control_image):
8
+ if control_image is None:
9
+ raise gr.Error("Please select or upload an input image")
10
 
11
+ if __name__ == "__main__":
12
+ _TITLE = '''DreamGaussian: Generative Gaussian Splatting for Efficient 3D Content Creation'''
13
+
14
+ _DESCRIPTION = '''
15
+ <div>
16
+ <a style="display:inline-block" href="https://jiawei-ren.github.io/projects/dreamgaussian4d/"><img src='https://img.shields.io/badge/public_website-8A2BE2'></a>
17
+ <a style="display:inline-block; margin-left: .5em" href="https://arxiv.org/abs/2312.17142"><img src="https://img.shields.io/badge/2309.16653-f9f7f7?logo="></a>
18
+ <a style="display:inline-block; margin-left: .5em" href='https://github.com/jiawei-ren/dreamgaussian4d'><img src='https://img.shields.io/github/stars/jiawei-ren/dreamgaussian4d?style=social'/></a>
19
+ </div>
20
+ We introduce DreamGaussian4D, an efficient 4D generation framework that builds on 4D Gaussian Splatting representation.
21
+ '''
22
+
23
+ # load images in 'assets' folder as examples
24
+ image_dir = os.path.join(os.path.dirname(__file__), "assets")
25
+ examples_img = None
26
+
27
+ if os.path.exists(image_dir) and os.path.isdir(image_dir) and os.listdir(image_dir):
28
+ examples_4d = [os.path.join(image_dir, file) for file in os.listdir(image_dir) if file.endswith('.ply')]
29
+ examples_img = [os.path.join(image_dir, file) for file in os.listdir(image_dir) if file.endswith('.png')]
30
+ else:
31
+ examples_4d = [os.path.join(os.path.dirname(__file__), example) for example in Model4DGS().example_inputs()]
32
+
33
+ def optimize(image_block: Image.Image):
34
+ # temporarily only show tiger
35
+ return f'{os.path.join(os.path.dirname(__file__), "logs")}/tiger.glb', examples_4d
36
+
37
+ # Compose demo layout & data flow
38
+ with gr.Blocks(title=_TITLE, theme=gr.themes.Soft()) as demo:
39
+ with gr.Row():
40
+ with gr.Column(scale=1):
41
+ gr.Markdown('# ' + _TITLE)
42
+ gr.Markdown(_DESCRIPTION)
43
+
44
+ with gr.Row(variant='panel'):
45
+ left_column = gr.Column(scale=5)
46
+ with left_column:
47
+ image_block = gr.Image(type='pil', image_mode='RGBA', height=290, label='Input image')
48
+
49
+ preprocess_chk = gr.Checkbox(True,
50
+ label='Preprocess image automatically (remove background and recenter object)')
51
+
52
+ with gr.Column(scale=5):
53
+ obj3d = gr.Model3D(clear_color=[0.0, 0.0, 0.0, 0.0], label="3D Model (Final)")
54
+ obj4d = Model4DGS(label="4D Model")
55
+
56
+ with left_column:
57
+ gr.Examples(
58
+ examples=examples_img, # NOTE: elements must match inputs list!
59
+ inputs=image_block,
60
+ outputs=obj3d,
61
+ fn=optimize,
62
+ label='Examples (click one of the images below to start)',
63
+ examples_per_page=40
64
+ )
65
+ img_run_btn = gr.Button("Generate 4D")
66
 
67
+ # if there is an input image, continue with inference
68
+ # else display an error message
69
+ img_run_btn.click(check_img_input, inputs=[image_block], queue=False).success(
70
+ optimize, inputs=[image_block], outputs=[obj3d, obj4d])
71
 
72
  if __name__ == "__main__":
73
  demo.launch(share=True)
src/demo/assets/anya_rgba.png ADDED
src/demo/assets/fox_rgba.png ADDED
src/demo/assets/monkey_rgba.png ADDED
src/demo/assets/tiger_rgba.png ADDED
src/demo/logs/0d6e37451ce97b5e97dd74e63f9a06b17644f2ad02f32534ce079493808d288f.glb ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:36c0b461d6973a61b97cfdcffb49c1e6e2ac2730cda3da2a53ca18eb1300c21d
3
+ size 2101240
src/demo/logs/_tmp_gradio_312f2981ccbecf05b94e9729c5e88e720cafa46c_1e5133dcc83642c805644360a403f7c38a9dffc7f860cb96a678c76708d997c0.glb ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3f898caa81d1c4eebae1bd8a3dd0581fd787290abc7c174051c0ab0366bb231f
3
+ size 2614792
src/demo/logs/_tmp_gradio_6a883f05b5f52ebd382b11a3aef0825b272d0837_2f78ca4365556592bd54881407d40b3928870cfa6d89ec389b65356b3759c96c.glb ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3f4b8d60a1208343c984b7bb129efb0a175b7f7dddd737e98e0302f4931f6dda
3
+ size 2711984
src/demo/logs/tiger_rgba.glb ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3f898caa81d1c4eebae1bd8a3dd0581fd787290abc7c174051c0ab0366bb231f
3
+ size 2614792
src/demo/space.py CHANGED
@@ -41,17 +41,73 @@ pip install gradio_model4dgs
41
  import gradio as gr
42
  from gradio_model4dgs import Model4DGS
43
  import os
 
 
44
 
45
- image_dir = os.path.join(os.path.dirname(__file__), "assets")
 
 
46
 
47
- if os.path.exists(image_dir) and os.path.isdir(image_dir) and os.listdir(image_dir):
48
- examples = [os.path.join(image_dir, file) for file in os.listdir(image_dir)]
49
- else:
50
- examples = [os.path.join(os.path.dirname(__file__), example) for example in Model4DGS().example_inputs()]
51
-
52
- with gr.Blocks() as demo:
53
- with gr.Row():
54
- Model4DGS(value=examples, label="4D Model")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55
 
56
  if __name__ == "__main__":
57
  demo.launch(share=True)
 
41
  import gradio as gr
42
  from gradio_model4dgs import Model4DGS
43
  import os
44
+ from PIL import Image
45
+ import hashlib
46
 
47
+ def check_img_input(control_image):
48
+ if control_image is None:
49
+ raise gr.Error("Please select or upload an input image")
50
 
51
+ if __name__ == "__main__":
52
+ _TITLE = '''DreamGaussian: Generative Gaussian Splatting for Efficient 3D Content Creation'''
53
+
54
+ _DESCRIPTION = '''
55
+ <div>
56
+ <a style="display:inline-block" href="https://jiawei-ren.github.io/projects/dreamgaussian4d/"><img src='https://img.shields.io/badge/public_website-8A2BE2'></a>
57
+ <a style="display:inline-block; margin-left: .5em" href="https://arxiv.org/abs/2312.17142"><img src="https://img.shields.io/badge/2309.16653-f9f7f7?logo="></a>
58
+ <a style="display:inline-block; margin-left: .5em" href='https://github.com/jiawei-ren/dreamgaussian4d'><img src='https://img.shields.io/github/stars/jiawei-ren/dreamgaussian4d?style=social'/></a>
59
+ </div>
60
+ We introduce DreamGaussian4D, an efficient 4D generation framework that builds on 4D Gaussian Splatting representation.
61
+ '''
62
+
63
+ # load images in 'assets' folder as examples
64
+ image_dir = os.path.join(os.path.dirname(__file__), "assets")
65
+ examples_img = None
66
+
67
+ if os.path.exists(image_dir) and os.path.isdir(image_dir) and os.listdir(image_dir):
68
+ examples_4d = [os.path.join(image_dir, file) for file in os.listdir(image_dir) if file.endswith('.ply')]
69
+ examples_img = [os.path.join(image_dir, file) for file in os.listdir(image_dir) if file.endswith('.png')]
70
+ else:
71
+ examples_4d = [os.path.join(os.path.dirname(__file__), example) for example in Model4DGS().example_inputs()]
72
+
73
+ def optimize(image_block: Image.Image):
74
+ # temporarily only show tiger
75
+ return f'{os.path.join(os.path.dirname(__file__), "logs")}/tiger.glb', examples_4d
76
+
77
+ # Compose demo layout & data flow
78
+ with gr.Blocks(title=_TITLE, theme=gr.themes.Soft()) as demo:
79
+ with gr.Row():
80
+ with gr.Column(scale=1):
81
+ gr.Markdown('# ' + _TITLE)
82
+ gr.Markdown(_DESCRIPTION)
83
+
84
+ with gr.Row(variant='panel'):
85
+ left_column = gr.Column(scale=5)
86
+ with left_column:
87
+ image_block = gr.Image(type='pil', image_mode='RGBA', height=290, label='Input image')
88
+
89
+ preprocess_chk = gr.Checkbox(True,
90
+ label='Preprocess image automatically (remove background and recenter object)')
91
+
92
+ with gr.Column(scale=5):
93
+ obj3d = gr.Model3D(clear_color=[0.0, 0.0, 0.0, 0.0], label="3D Model (Final)")
94
+ obj4d = Model4DGS(label="4D Model")
95
+
96
+ with left_column:
97
+ gr.Examples(
98
+ examples=examples_img, # NOTE: elements must match inputs list!
99
+ inputs=image_block,
100
+ outputs=obj3d,
101
+ fn=optimize,
102
+ label='Examples (click one of the images below to start)',
103
+ examples_per_page=40
104
+ )
105
+ img_run_btn = gr.Button("Generate 4D")
106
+
107
+ # if there is an input image, continue with inference
108
+ # else display an error message
109
+ img_run_btn.click(check_img_input, inputs=[image_block], queue=False).success(
110
+ optimize, inputs=[image_block], outputs=[obj3d, obj4d])
111
 
112
  if __name__ == "__main__":
113
  demo.launch(share=True)