Spaces:
Running
Running
File size: 7,154 Bytes
ebc5bbb 3fb43f7 ebc5bbb 3fb43f7 850ad91 ebc5bbb 84f5285 ebc5bbb 84f5285 ebc5bbb 850ad91 ebc5bbb 850ad91 ebc5bbb 3be4612 86999fe 4204e2b 0060a9d ebc5bbb 850ad91 ebc5bbb 850ad91 ebc5bbb 4130f66 ebc5bbb a4c2ed8 ebc5bbb a4c2ed8 ebc5bbb a4c2ed8 ebc5bbb 469b5f7 ebc5bbb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 |
__all__ = ['block', 'make_clickable_model', 'make_clickable_user', 'get_submissions']
import gradio as gr
import pandas as pd
import json
import pdb
import tempfile
from constants import *
from src.auto_leaderboard.model_metadata_type import ModelType
from src.compute import compute_scores
global data_component, filter_component
def upload_file(files):
file_paths = [file.name for file in files]
return file_paths
def add_new_eval(
input_file,
model_name_textbox: str,
revision_name_textbox: str,
model_link: str,
):
if input_file is None:
return "Error! Empty file!"
else:
input_file = compute_scores(input_file)
input_data = input_file[1]
input_data = [float(i) for i in input_data]
csv_data = pd.read_csv(CSV_DIR)
if revision_name_textbox == '':
col = csv_data.shape[0]
model_name = model_name_textbox
name_list = [name.split(']')[0][1:] if name.endswith(')') else name for name in csv_data['Model']]
print(name_list)
print(model_name)
assert model_name not in name_list
else:
model_name = revision_name_textbox
model_name_list = csv_data['Model']
name_list = [name.split(']')[0][1:] if name.endswith(')') else name for name in model_name_list]
if revision_name_textbox not in name_list:
col = csv_data.shape[0]
else:
col = name_list.index(revision_name_textbox)
if model_link == '':
model_name = model_name # no url
else:
model_name = '[' + model_name + '](' + model_link + ')'
# add new data
new_data = [
model_name,
input_data[0],
input_data[1],
input_data[2],
input_data[3],
input_data[4],
input_data[5],
input_data[6],
input_data[7],
input_data[8],
input_data[9],
input_data[10],
input_data[11],
input_data[12],
input_data[13],
input_data[14],
input_data[15],
input_data[16],
]
csv_data.loc[col] = new_data
# with open(f'./file/{model_name}.json','w' ,encoding='utf-8') as f:
# json.dump(new_data, f)
csv_data.to_csv(CSV_DIR, index=False)
return 0
def get_baseline_df():
# pdb.set_trace()
df = pd.read_csv(CSV_DIR)
df = df.sort_values(by="Avg. All", ascending=False)
present_columns = MODEL_INFO + checkbox_group.value
df = df[present_columns]
return df
def get_all_df():
df = pd.read_csv(CSV_DIR)
df = df.sort_values(by="Avg. All", ascending=False)
return df
block = gr.Blocks()
with block:
gr.Markdown(
LEADERBORAD_INTRODUCTION
)
with gr.Tabs(elem_classes="tab-buttons") as tabs:
with gr.TabItem("🏅 Video Benchmark", elem_id="video-benchmark-tab-table", id=0):
with gr.Row():
with gr.Accordion("Citation", open=False):
citation_button = gr.Textbox(
value=CITATION_BUTTON_TEXT,
label=CITATION_BUTTON_LABEL,
elem_id="citation-button",
).style(show_copy_button=True)
gr.Markdown(
TABLE_INTRODUCTION
)
# selection for column part:
checkbox_group = gr.CheckboxGroup(
choices=TASK_INFO_v2,
value=AVG_INFO,
label="Select options",
interactive=True,
)
# 创建数据帧组件
data_component = gr.components.Dataframe(
value=get_baseline_df,
headers=COLUMN_NAMES,
type="pandas",
datatype=DATA_TITILE_TYPE,
interactive=False,
visible=True,
)
def on_checkbox_group_change(selected_columns):
# pdb.set_trace()
selected_columns = [item for item in TASK_INFO_v2 if item in selected_columns]
present_columns = MODEL_INFO + selected_columns
updated_data = get_all_df()[present_columns]
updated_data = updated_data.sort_values(by=present_columns[1], ascending=False)
updated_headers = present_columns
update_datatype = [DATA_TITILE_TYPE[COLUMN_NAMES.index(x)] for x in updated_headers]
filter_component = gr.components.Dataframe(
value=updated_data,
headers=updated_headers,
type="pandas",
datatype=update_datatype,
interactive=False,
visible=True,
)
# pdb.set_trace()
return filter_component.value
# 将复选框组关联到处理函数
checkbox_group.change(fn=on_checkbox_group_change, inputs=checkbox_group, outputs=data_component)
'''
# table 2
with gr.TabItem("📝 About", elem_id="seed-benchmark-tab-table", id=2):
gr.Markdown(LEADERBORAD_INFO, elem_classes="markdown-text")
'''
# table 3
with gr.TabItem("🚀 Submit here! ", elem_id="seed-benchmark-tab-table", id=3):
gr.Markdown(LEADERBORAD_INTRODUCTION, elem_classes="markdown-text")
with gr.Row():
gr.Markdown(SUBMIT_INTRODUCTION, elem_classes="markdown-text")
with gr.Row():
gr.Markdown("# ✉️✨ Submit your model evaluation json file here!", elem_classes="markdown-text")
with gr.Row():
with gr.Column():
model_name_textbox = gr.Textbox(
label="Model name", placeholder="Chat-UniVi-7B"
)
revision_name_textbox = gr.Textbox(
label="Revision Model Name", placeholder="Chat-UniVi-7B"
)
model_link = gr.Textbox(
label="Model Link", placeholder="https://github.com/PKU-YuanGroup/Chat-UniVi"
)
with gr.Column():
input_file = gr.File(label="Click to Upload a json File", type='binary')
submit_button = gr.Button("Submit Eval")
submission_result = gr.Markdown()
submit_button.click(
add_new_eval,
inputs=[
input_file,
model_name_textbox,
revision_name_textbox,
model_link,
],
# outputs = submission_result,
)
with gr.Row():
data_run = gr.Button("Refresh")
data_run.click(
get_baseline_df, outputs=data_component
)
# block.load(get_baseline_df, outputs=data_title)
block.launch() |