File size: 8,498 Bytes
6ca2788
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3fb43f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6ca2788
 
3fb43f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6ca2788
3fb43f7
 
 
 
 
 
6ca2788
3fb43f7
 
 
 
 
 
6ca2788
3fb43f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4130f66
3fb43f7
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
# import json
# import os
# import glob
# import argparse
# import csv
#
#
# def chatgpt_json(merge_file):
#     # chat results
#     merge_data = merge_file.decode("utf-8")
#     merge_data = eval(merge_data)
#     correct_answer_file = 'file/ANSWER.json'
#     with open(correct_answer_file, 'r', encoding='utf-8') as f:
#         correct_answer_data = json.load(f)
#
#     dataset_scores_dict = {}
#     for dataset_name, item in merge_data.items():
#
#         total_nums = len(item)
#         correct = 0
#         # assert len(item) >= len(correct_answer_data[dataset_name]), f'Video-Bench-Input.json---{dataset_name}---is incomplete!'
#         for id, sub_item in item.items():
#             if sub_item['output_chatgpt_choice'] == correct_answer_data[dataset_name][id]['answer']:
#                 correct += 1
#
#         dataset_scores_dict[dataset_name] = round(correct / total_nums * 100, 2)
#     return dataset_scores_dict
#
#
# def compute_scores(merge_file):
#     dataset_score_dict = chatgpt_json(merge_file)
#     dataset_weight = {
#         1:
#             {
#                 "ActivityNet": 1,
#                 "MSVD": 1,
#                 "MSRVTT": 1,
#                 "TGIF": 1,
#                 "Youcook2": 1,
#                 "Ucfcrime": 1,
#                 "MOT": 0.5,
#             },
#
#         2:
#             {
#                 "TVQA": 1,
#                 "MV": 1,
#                 "NBA": 1,
#             },
#
#         3:
#             {
#                 "Driving-exam": 0.5,
#                 "Driving-decision-making": 1,
#                 "SQA3D": 1,
#             }
#
#     }
#
#     # Video-exclusive Understanding score
#     exclusive_understanding_weight = dataset_weight[1]
#     weights_sum = sum(exclusive_understanding_weight.values())
#     exclusive_understanding_score = 0
#     # import ipdb; ipdb.set_trace()
#     for dataset_name, weight in exclusive_understanding_weight.items():
#         exclusive_understanding_score += weight * dataset_score_dict[dataset_name] / weights_sum
#
#     # Prior Knowledge-based Question-answer
#     prior_QA_weight = dataset_weight[2]
#     weights_sum = sum(prior_QA_weight.values())
#     prior_QA_score = 0
#     for dataset_name, weight in prior_QA_weight.items():
#         prior_QA_score += weight * dataset_score_dict[dataset_name] / weights_sum
#
#     # Comprehension and Decision-making
#     com_and_dec_QA_weight = dataset_weight[3]
#     weights_sum = sum(com_and_dec_QA_weight.values())
#     com_and_dec_QA_score = 0
#     for dataset_name, weight in com_and_dec_QA_weight.items():
#         com_and_dec_QA_score += weight * dataset_score_dict[dataset_name] / weights_sum
#
#     dataset_score_dict['Exclusive_understanding'] = exclusive_understanding_score
#     dataset_score_dict['Prior_Knowledge'] = prior_QA_score
#     dataset_score_dict['Comprehension_and_Decision-making'] = com_and_dec_QA_score
#
#     # final score
#     final_score = sum([exclusive_understanding_score, prior_QA_score, com_and_dec_QA_score]) / 3
#     dataset_score_dict['final_score'] = final_score
#
#     # print(dataset_score_dict)
#     # with open(args.score_output_file, 'w', encoding='utf-8') as f:
#     #   json.dump(dataset_score_dict, f, indent=2)
#     # print(f'{args.score_output_file} is saved!')
#     # ========================
#     data = [
#
#         ["Avg. All", "Avg. Video-Exclusive", "Avg. Prior-Knowledge QA", "Avg. Decision-Making",
#          "ActivityNet", "MSVD", "MSRVTT", "TGIF", "Youcook2", "Ucfcrime",
#          "MOT", "TVQA", "MV", "NBA", "Driving-exam", "Driving-decision-making", "SQA3D"],
#
#         [final_score, exclusive_understanding_score, prior_QA_score, com_and_dec_QA_score,
#          dataset_score_dict['ActivityNet'],
#          dataset_score_dict["MSVD"],
#          dataset_score_dict['MSRVTT'],
#          dataset_score_dict['TGIF'],
#          dataset_score_dict['Youcook2'],
#          dataset_score_dict['Ucfcrime'],
#          dataset_score_dict['MOT'],
#          dataset_score_dict['TVQA'],
#          dataset_score_dict['MV'],
#          dataset_score_dict['NBA'],
#          dataset_score_dict['Driving-exam'],
#          dataset_score_dict['Driving-decision-making'],
#          dataset_score_dict['SQA3D'],
#          ],
#     ]
#
#     return data
#

import json
import os
import glob
import argparse
import csv


def chatgpt_json(merge_file):
    # chat results
    merge_data = merge_file.decode("utf-8")
    merge_data = eval(merge_data)
    correct_answer_file = 'file/ANSWER.json'
    with open(correct_answer_file, 'r', encoding='utf-8') as f:
        correct_answer_data = json.load(f)

    dataset_scores_dict = {}
    for dataset_name, item in merge_data.items():

        total_nums = len(item)
        correct = 0
        # assert len(item) >= len(correct_answer_data[dataset_name]), f'Video-Bench-Input.json---{dataset_name}---is incomplete!'
        for id, sub_item in item.items():
            if sub_item['output_chatgpt_choice'] == correct_answer_data[dataset_name][id]['answer']:
                correct += 1

        # dataset_scores_dict[dataset_name] = round(correct / total_nums * 100, 2)
        dataset_scores_dict[dataset_name] = round(correct / total_nums , 4)
    return dataset_scores_dict


def compute_scores(merge_file):
    dataset_score_dict = chatgpt_json(merge_file)
    dataset_weight = {
        1:
            {
                "ActivityNet": 1,
                "MSVD": 1,
                "MSRVTT": 1,
                "TGIF": 1,
                "Youcook2": 1,
                "Ucfcrime": 1,
                "MOT": 0.5,
            },

        2:
            {
                "TVQA": 1,
                "MV": 1,
                "NBA": 1,
            },

        3:
            {
                "Driving-exam": 0.5,
                "Driving-decision-making": 1,
                "SQA3D": 1,
            }

    }

    # Video-exclusive Understanding score
    exclusive_understanding_weight = dataset_weight[1]
    weights_sum = sum(exclusive_understanding_weight.values())
    exclusive_understanding_score = 0
    # import ipdb; ipdb.set_trace()
    for dataset_name, weight in exclusive_understanding_weight.items():
        exclusive_understanding_score += weight * dataset_score_dict[dataset_name] / weights_sum * 100

    # Prior Knowledge-based Question-answer
    prior_QA_weight = dataset_weight[2]
    weights_sum = sum(prior_QA_weight.values())
    prior_QA_score = 0
    for dataset_name, weight in prior_QA_weight.items():
        prior_QA_score += weight * dataset_score_dict[dataset_name] / weights_sum *100

    # Comprehension and Decision-making
    com_and_dec_QA_weight = dataset_weight[3]
    weights_sum = sum(com_and_dec_QA_weight.values())
    com_and_dec_QA_score = 0
    for dataset_name, weight in com_and_dec_QA_weight.items():
        com_and_dec_QA_score += weight * dataset_score_dict[dataset_name] / weights_sum *100

    dataset_score_dict['Exclusive_understanding'] = exclusive_understanding_score
    dataset_score_dict['Prior_Knowledge'] = prior_QA_score
    dataset_score_dict['Comprehension_and_Decision-making'] = com_and_dec_QA_score

    # final score
    final_score = sum([exclusive_understanding_score, prior_QA_score, com_and_dec_QA_score]) / 3
    dataset_score_dict['final_score'] = final_score

    # print(dataset_score_dict)
    # with open(args.score_output_file, 'w', encoding='utf-8') as f:
    #   json.dump(dataset_score_dict, f, indent=2)
    # print(f'{args.score_output_file} is saved!')
    # ========================
    data = [

        ["Avg. All", "Avg. Video-Exclusive", "Avg. Prior-Knowledge QA", "Avg. Decision-Making",
         "ActivityNet", "MSVD", "MSRVTT", "TGIF", "Youcook2", "Ucfcrime",
         "MOT", "TVQA", "MV", "NBA", "Driving-exam", "Driving-decision-making", "SQA3D"],

        [final_score, exclusive_understanding_score, prior_QA_score, com_and_dec_QA_score,
         dataset_score_dict['ActivityNet'],
         dataset_score_dict["MSVD"],
         dataset_score_dict['MSRVTT'],
         dataset_score_dict['TGIF'],
         dataset_score_dict['Youcook2'],
         dataset_score_dict['Ucfcrime'],
         dataset_score_dict['MOT'],
         dataset_score_dict['TVQA'],
         dataset_score_dict['MV'],
         dataset_score_dict['NBA'],
         dataset_score_dict['Driving-exam'],
         dataset_score_dict['Driving-decision-making'],
         dataset_score_dict['SQA3D'],
         ],
    ]


    return data