File size: 6,566 Bytes
8cff839
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d88cafd
 
 
 
 
 
 
 
8cff839
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9e20103
8cff839
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e4984cd
 
9c9f59c
8cff839
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0b843f0
8cff839
 
 
 
34698bf
8cff839
 
e4984cd
8cff839
 
 
0f5786a
8cff839
0f5786a
 
8cff839
 
 
 
 
 
 
0f5786a
8cff839
 
 
 
 
4d0f74a
8cff839
 
 
 
 
 
 
 
 
 
 
 
 
4d0f74a
8cff839
 
 
 
 
 
 
 
 
 
2911a7c
8cff839
82b8cd6
4826646
 
 
 
 
 
 
 
 
 
6139cc0
4826646
 
 
 
 
 
a9c493f
 
10cc61c
5a83e07
31f6ddd
 
8805629
 
 
 
 
 
 
 
 
 
 
8cff839
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4826646
 
d266fc1
5e92a6f
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
import streamlit as st
import sahi.utils.file
import sahi.utils.mmdet
from sahi import AutoDetectionModel
from PIL import Image
import random
from utils import sahi_mmdet_inference
from streamlit_image_comparison import image_comparison

MMDET_YOLOX_TINY_MODEL_URL = "https://huggingface.co/fcakyon/mmdet-yolox-tiny/resolve/main/yolox_tiny_8x8_300e_coco_20211124_171234-b4047906.pth"
MMDET_YOLOX_TINY_MODEL_PATH = "yolox.pt"
MMDET_YOLOX_TINY_CONFIG_URL = "https://huggingface.co/fcakyon/mmdet-yolox-tiny/raw/main/yolox_tiny_8x8_300e_coco.py"
MMDET_YOLOX_TINY_CONFIG_PATH = "config.py"

IMAGE_TO_URL = {
    "apple_tree.jpg": "https://user-images.githubusercontent.com/34196005/142730935-2ace3999-a47b-49bb-83e0-2bdd509f1c90.jpg",
    "highway.jpg": "https://user-images.githubusercontent.com/34196005/142730936-1b397756-52e5-43be-a949-42ec0134d5d8.jpg",
    "highway2.jpg": "https://user-images.githubusercontent.com/34196005/142742871-bf485f84-0355-43a3-be86-96b44e63c3a2.jpg",
    "highway3.jpg": "https://user-images.githubusercontent.com/34196005/142742872-1fefcc4d-d7e6-4c43-bbb7-6b5982f7e4ba.jpg",
    "highway2-yolox.jpg": "https://user-images.githubusercontent.com/34196005/143309873-c0c1f31c-c42e-4a36-834e-da0a2336bb19.jpg",
    "highway2-sahi.jpg": "https://user-images.githubusercontent.com/34196005/143309867-42841f5a-9181-4d22-b570-65f90f2da231.jpg",
}

slice_size=512
overlap_ratio=0.2
postprocess_match_metric = 'IOU'
postprocess_type = 'NMS'
postprocess_match_threshold = 0.5
postprocess_class_agnostic = True



@st.cache(allow_output_mutation=True, show_spinner=False)
def download_comparison_images():
    sahi.utils.file.download_from_url(
        "https://user-images.githubusercontent.com/34196005/143309873-c0c1f31c-c42e-4a36-834e-da0a2336bb19.jpg",
        "highway2-yolox.jpg",
    )
    sahi.utils.file.download_from_url(
        "https://user-images.githubusercontent.com/34196005/143309867-42841f5a-9181-4d22-b570-65f90f2da231.jpg",
        "highway2-sahi.jpg",
    )


@st.cache(allow_output_mutation=True, show_spinner=False)
def get_model():
    sahi.utils.file.download_from_url(
        MMDET_YOLOX_TINY_MODEL_URL,
        MMDET_YOLOX_TINY_MODEL_PATH,
    )
    sahi.utils.file.download_from_url(
        MMDET_YOLOX_TINY_CONFIG_URL,
        MMDET_YOLOX_TINY_CONFIG_PATH,
    )

    detection_model = AutoDetectionModel.from_pretrained(
        model_type='mmdet',
        model_path=MMDET_YOLOX_TINY_MODEL_PATH,
        config_path=MMDET_YOLOX_TINY_CONFIG_PATH,
        confidence_threshold=0.5,
        device="cpu",
    )
    return detection_model


class SpinnerTexts:
    def __init__(self):
        self.ind_history_list = []
        self.text_list = [
            "Loading...",
        ]

    def _store(self, ind):
        if len(self.ind_history_list) == 6:
            self.ind_history_list.pop(0)
        self.ind_history_list.append(ind)

    def get(self):
        ind = 0
        while ind in self.ind_history_list:
            ind = random.randint(0, len(self.text_list) - 1)
        self._store(ind)
        return self.text_list[ind]


st.set_page_config(
    page_title="A Demonstration of SARAI's Utility",
    page_icon="🐦",
    layout="wide",
    initial_sidebar_state="auto",
)

download_comparison_images()

if "last_spinner_texts" not in st.session_state:
    st.session_state["last_spinner_texts"] = SpinnerTexts()

if "output_1" not in st.session_state:
    st.session_state["output_1"] = Image.open("highway2-yolox.jpg")

if "output_2" not in st.session_state:
    st.session_state["output_2"] = Image.open("highway2-sahi.jpg")

st.markdown(
    """
    <h2 style='text-align: center'>
A Demonstration of SARAI's Utility
    </h2>
    """,
    unsafe_allow_html=True,
)

st.write("##")

with st.expander("Instructions for Use"):
    st.markdown(
        """
        <p>
        1. Upload or select the input image
        <br />
        2. Press "Perform Prediction" to start image processing"

        </p>
        """,
        unsafe_allow_html=True,
    )

st.write("##")

col1, col2, col3 = st.columns([4, 1, 6])
with col1:
    st.markdown(f"##### Set input image:")

    # set input image by upload
    image_file = st.file_uploader(
        "Upload an image:", type=["jpg", "jpeg", "png"]
    )

    # set input image from exapmles
    def slider_func(option):
        option_to_id = {
            "apple_tree.jpg": str(1),
            "highway.jpg": str(2),
            "highway2.jpg": str(3),
            "highway3.jpg": str(4),
        }
        return option_to_id[option]

    slider = st.select_slider(
        "Or select from our sample images:",
        options=["apple_tree.jpg", "highway.jpg", "highway2.jpg", "highway3.jpg"],
        format_func=slider_func,
        value="highway2.jpg",
    )

    # visualize input image
    if image_file is not None:
        image = Image.open(image_file)
    else:
        image = sahi.utils.cv.read_image_as_pil(IMAGE_TO_URL[slider])
    st.image(image, width=325)





with col3:
    st.markdown(f"##### YOLOX Standard vs SARAI Prediction:")
    static_component = image_comparison(
        img1=st.session_state["output_1"],
        img2=st.session_state["output_2"],
        label1="YOLOX",
        label2="SARAI",
        width=700,
        starting_position=50,
        show_labels=True,
        make_responsive=True,
        in_memory=True,
    )

    

col1, col2, col3, col4, col5= st.columns([1, 2, 4, 2, 2])
with col2:
    # submit button
    submit = st.button("Perform Prediction")

if submit:
    # perform prediction
    with st.spinner(
        text="Downloading model weight.. "
        + st.session_state["last_spinner_texts"].get()
    ):
        detection_model = get_model()

    image_size = 416

    with st.spinner(
        text="Performing prediction.. " + st.session_state["last_spinner_texts"].get()
    ):
        output_1, output_2 = sahi_mmdet_inference(
            image,
            detection_model,
            image_size=image_size,
            slice_height=slice_size,
            slice_width=slice_size,
            overlap_height_ratio=overlap_ratio,
            overlap_width_ratio=overlap_ratio,
            postprocess_type=postprocess_type,
            postprocess_match_metric=postprocess_match_metric,
            postprocess_match_threshold=postprocess_match_threshold,
            postprocess_class_agnostic=postprocess_class_agnostic,
        )

    st.session_state["output_1"] = output_1
    st.session_state["output_2"] = output_2

    
with col4:
    st.markdown(f"##### Slide to Compare")